Supporting Information for

Controlling the mesomorphic properties of supramolecular liquid crystals by resonance-assisted hydrogen bonding

Marco Saccone^{a±}, Michael Pfletscher^{a±}, Sven Kather^a, Christoph Wölper^b, Constantin Daniliuc^c, Markus Mezger^d and Michael Giese^{a*}

^aInstitute of Organic Chemistry, University Duisburg-Essen, Universitätsstr. 7, D-45141 Essen. E-mail: michael.giese@uni-due.de

^bInstitute of Inorganic Chemistry, University Duisburg-Essen Universitätsstr. 7, D-45141 Essen.

^cInstitute of Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany

^dInstitute of Physic, Johannes Gutenberg-University Mainz and Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55021 Mainz.

Index

1	Ma	terials and Methods	1
2	Мо	dels of the 2CO- and CN-PHG Aggregates	3
3	DF	T-Calculated PHG Structure with Dipoles and vdW Volumes	4
4	Cry	vstal Packing of NO ₂ -PHG Aggregate	5
5	Experimental Procedure and Analytical Data		6
	5.1	Synthesis of the Functionalized Phloroglucinol Core	6
6	Syn	thesis and Analysis of the HBAs	11
	6.1	Series of <i>1C</i> -PHG assemblies	11
	6.2	Series of 2C-PHG assemblies	12
	6.3	Series of 10C-PHG assemblies	14
	6.4	Series of <i>1CO</i> -PHG assemblies	15
	6.5	Series of 2CO-PHG assemblies	17
	6.6	Series of 10CO-PHG assemblies	20
	6.7	Series of <i>Cl</i> -PHG assemblies	22
	6.8	Series of <i>Br</i> -PHG assemblies	24
	6.9	Series of <i>CN</i> -PHG assemblies	25
	6.10	Series of <i>NO</i> ₂ -PHG assemblies	26
	6.11	Series of <i>NO</i> _H -PHG-assemblies	29
	6.12	IR Spectra	31
	6.13	POM Images	41
	6.14	DSC-Thermograms and Tables	55
	6.15	SAXS Data of the HBAs	70
	6.16	Crystallographic Data of the HBAs	74
	6.17	Literature	75

1 Materials and Methods

Compounds and solvents were used as obtained from suppliers without further purification. Phloroglucinol, 1-(2,4,6-trihydroxyphenyl)ethanone (*CO*-PHG), 2,4,6-trihydroxy-benzonitrile (*CN*-PHG) and 2-nitrobenzene-1,3,5-triol (*NO*₂-PHG) were commercially available. ¹*H*- and ¹³*C*-NMR-Spectra of the intermediates and products were recorded in deuterated solvents (CDCl₃, DMSO-*d*6 or MeOD) with a Bruker DRX 300. Mass spectra were obtained with a Bruker amaZon (MS) and IR-spectra were recorded with a Varian 3100 FT-IR, Excalibur Series, ATR IR-spectrometer. Polarized optical microscopy (POM) images/videos were taken on a Nikon Eclipse Ni microscope with crossed polarizers equipped with a heating stage from Linkam. The images were recorded by an Imaging Source camera (DFK23UX174). DSC thermograms were received using a DSC 7 by Perkin Elmer with a heating/cooling speed of 10° C/min (sample weight ~3 mg).

Single-crystal X-ray analyses. The crystal was mounted on a nylon loop in inert oil. Data were collected on a Bruker AXS D8 Kappa diffractometer with APEX2 detector (monochromated MoKα radiation, $\lambda = 0.71073$ Å) at 100(1) K. The structure was solved by Direct Methods (SHELXS-97)¹ and anisotropically refined by full-matrix least-squares on F2 (SHELXL-2014)^{2,3}. Absorption correction was performed semi-empirically from equivalent reflections on basis of multi-scans (Bruker AXS APEX2). Hydrogen atoms were refined using a riding model or rigid methyl groups. The hydrogen atoms of the OH-groups have been identified in the difference fourier synthesis and freely refined. The azo bridges and neighboring carbon atoms are disordered over two positions. Where possible/large enough both components were refined using partial occupation. To facilitate an anisotropic refinement of the displacement RIGU restraints were applied and in case of N60c an additional ISOR restraint. The crystallographic data of the described complexes have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1886743, 1886744, 1884535. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge, CB21EZ (fax: (+44) 1223/336033; e-mail: deposit@ccdc.cam-ak.uk).

X-ray Scattering. X-ray diffraction (XRD) was employed to identify the liquid crystalline phases of the assemblies. Measurements were done in transmission geometry at a home build instrument using a rotating anode x-ray generator (Rigaku MicroMax 007), multilayer optics (Osmic Confocal Max-Flux, CuK_{α}). Samples were contained in 1.0 mm glass capillaries and placed in a temperature controlled holder. A magnetic field was applied perpendicular to the X-ray beam to orient the sample in the mesomorphic phase. 2D diffraction pattern was recorded

on an online image plate detector (Mar345) at a sample-detector distance of 35 cm. Diffraction patterns I vs. 2θ were obtained by radial averaging the 2D data.

DFT calculations. Quantum mechanical density functional theory (DFT) calculations have been used to determine the geometric (optimized structure, van der Waals volume) and electronic properties (dipole) of the core units. Geometric optimization was performed using Gaussian16¹ software at the B3LYP-D3/6-31G(d)² level of theory. Frequencies were calculated at the same level of theory. No imaginary frequencies were found. The van der Waals volumes of the cores were calculated on the B3LYP-D3/aug-cc-pVTZ³ level of theory. For visualization of the electrostatic potential (ESP) isosurface MoleCoolQt⁴ was used. Based on the suggestion of Bader *et al.*⁵, we employed the (r) = 0.001 a.u. (electrons Bohr⁻³) contour, encompassing roughly 97% of the molecules' electronic charge.

2 Models of the 2CO- and CN-PHG Aggregates

Supporting Figure S1. Schematic models of the *2CO*- and *CN*-PHG Aggregates with Ap-8 and Ap-10, which were drawn from the corresponding aggregates reported here and earlier.⁶ The aliphatic chains have been extended towards octyl and decyl chains, where the CH₂ groups were aligned in the all-*trans* fashion. From these models molecular lengths of $L_1 = 2.69$ nm and $L_2 = 5.44$ nm for *2CO*-PHG···(Ap-8)₂ and *CN*-PHG···(Ap-10)₃, respectively, can be measured.

3 DFT-Calculated PHG Structure with Dipoles and vdW Volumes

Supporting Figure S2. Optimized geometries of the functionalized **PHG** cores with their calculated electrostatic surface potentials, dipoles and van der Waals (vdW) volumes. Since we obtained a suspicious vdW volume for the *CN*-**PHG** core, we recalculated the vdW volume on B3LYP-D3/6-31G(d) level of theory yielding a volume of 114.4 cm³/mol, which has been used for further comparisons.

4 Crystal Packing of *NO*₂-PHG Aggregate

Supporting Figure S3. Representative views of the crystalline packing of NO_2 -PHG···(Ap-8)₃ show the aggregation of nitro-based cores, which might induce crystalline transitions.

5 Experimental Procedure and Analytical Data

Supporting Figure S4. General synthetic strategy for the synthesis of the functionalized *Y*-PHG cores. Details about the single steps are given in the following chapter. i) AlCl₃, RCOCl mit R: H, CH₃ und C₉H₁₉, NO₂Me, CH₂Cl₂. ii) NaBH₃CN, HCl, CH₃OH. iii) (CH₃)₂SO₄, K₂CO₃, (CH₃)₂CO. iv) NXS mit X: Cl, Br und I, CH₂Cl₂. v) BBr₃, CH₂Cl₂. vi) H₂NOH×HCl, K₂CO₃, C₂H₅OH.

5.1 Synthesis of the Functionalized Phloroglucinol Core

2',4',6'-trihydroxyacetophenone (1.0 g, 6.0 mmol), NaBH₃CN (1.1 g, 18.0 mmol) were dissolved in 30 mL THF, and allowed by dropwise 60 mL HCl (1.0 M) within 12 h. After the addition of HCl, the reaction was run for 48 h, before it was diluted with H₂O and extracted with ethyl acetate. The organic phase was dried (MgSO₄), filtered and evaporated. The residue was purified by column chromatography on SiO₂ and DCM/MeOH or EE/cycloh to give the desired product as white solid.

2-Methylbenzene-1,3,5-triol (1C-PHG)

Column was run with EE/cycloh 1:2.

Yield: 56.0 %. M.p: 215-217 °C (decomp.). ¹H-NMR (300 MHz, DMSO): $\delta = 8.78$ (s, 2H), 8.65 (s, 1H), 5.75 (s, 2H), 1.79 (s, 3H) ppm. ¹³C-NMR (75 MHz, DMSO): $\delta = 156.38$, 155.44, 100.64, 93.95, 7.96 ppm. MS (ESI): m/z (%): negative: calc. C₇H₈O₃⁻: 139.0401 found: 139.0403. FT-IR (ATR): v (cm⁻¹) = 3283, 3109, 2921, 2821, 2849, 2751, 2597, 2363, 1650, 1644, 1607, 1558, 1519, 1464, 1407, 1365, 1327, 1283, 1224, 1169, 1085, 1066, 1026, 1016, 965, 902, 848, 826, 796, 744, 712, 658. C₇H₈O₃ (140.14): C 60.0, H 5.75 (%); found: C 60.5, H 5.69 (%).

2-Ethylbenzene-1,3,5-triol (2C-PHG)

Column was run with DCM/MeOH 10:1.

Yield: 48.0 %. M.p: 214-218 °C (decomp.). ¹H-NMR (300 MHz, DMSO): $\delta = 8.74$ (s, 2H), 8.67 (s, 1H), 5.75 (s, 2H), 2.37 (q, J = 7.3 Hz, 2H), 0.94 (t, J = 7.3 Hz, 3H) ppm. ¹³C-NMR (75 MHz, DMSO): $\delta = 156.15$, 155.53, 107.50, 94.03, 15.56, 14.24 ppm. MS (ESI): m/z (%): negative: calc. C₈H₁₀O₃-H⁻: 153.0557, found: 153.0562. FT-IR (ATR): v (cm⁻¹) = 3283, 3109, 2921, 2821, 2849, 2751, 2597, 2363, 1650, 1644, 1607, 1558, 1519, 1464, 1407, 1365, 1327, 1283, 1224, 1169, 1085, 1066, 1026, 1016, 965, 902, 848, 826, 796, 744, 712, 658.

2-Decylbenzene-1,3,5-triol (10C-PHG)

Column was run with DCM/MeOH 5:1.

Yield: 46.0 %. M.p: 112-115 °C (MeOH). ¹H-NMR (300 MHz, DMSO): $\delta = 8.65$ (s, 1H), 5.73 (s, 2H), 2.38 – 2.21 (m, 2H), 1.38 – 1.28 (m, 2H), 1.22 (s, 14H), 0.84 (t, J = 6.7 Hz, 3H) ppm. ¹³C-NMR (75 MHz, DMSO): $\delta = 156.34$, 155.49, 106.16, 93.99, 31.24, 29.18, 29.08, 29.07, 29.00, 28.67, 22.32, 22.04, 13.90 ppm. MS (ESI): m/z (%): positive: calc. C₁₆H₂₆O₃+H⁺: 267.1955, found: 267.1950. FT-IR (ATR): v (cm⁻¹) = 3244, 2954, 2918, 2870, 2849, 1620, 1520, 1464, 1392, 1375, 1315, 1287, 1266, 1242, 1209, 1148, 1114, 1073, 1031, 1007,980, 807, 794, 719. C₁₆H₂₆O₃ (266.19): C 72.1, H 9.84 (%); found: C 71.7, H 9.52 (%).

1-(2,4,6-Trihydroxyphenyl)alkanone (*nCO*-PHG)

To a stirred suspension of phloroglucinol (0.5 g, 3.97 mmol, 1.0 eq.) in a mixture of DCM (4 mL) and nitromethane (4 mL), aluminium trichloride (2.12 g, 15.9 mmol, 4.0 eq.) was added and the mixture was stirred at room temperature for 30 min. To this dark suspension, the corresponding alkanoyl chloride (1.0 eq.) was added slowly by syringe (HCl outgassing!). After complete addition, the mixture was refluxed for 3 h, while checking the progress of the reaction by TLC. Thereafter, the mixture was cooled down to room temperature and poured into icewater (about 7 mL) followed by evaporation of most of the volatiles under reduced pressure. This was followed by extraction of the mixture with ethyl acetate. The combined organic layers were washed with saturated NaCl solution, dried over MgSO₄, filtered and concentrated in vacuo. Purification of the residue by flash chromatography on SiO₂ and cyclohexane/ethyl acetate provided the desired phloroglucinol derivative (46-59 %) as white crystals.

1-(2,4,6-Trihydroxyphenyl)ethanone (2CO-PHG)

Column was run with cycloh/ethyl acetate 2:1.

M.p: 214-216 °C (decomp). ¹H-NMR (300 MHz, DMSO): $\delta = 12.21$ (s, 2H), 10.34 (s, 1H), 5.79 (s, 2H), 2.54 (s, 3H) ppm. ¹³C-NMR (75 MHz, DMSO): $\delta = 202.38$, 164.71, 164.23, 103.97, 94.46, 32.29, 26.28 ppm. MS (ESI): m/z (%): positive: calc. C₈H₈O₄+H⁺: 169.0495, found: 169.0499. FT-IR (ATR): v (cm⁻¹) = 3283, 3109, 2921, 2821, 2849, 2751, 2597, 2363, 1650, 1644, 1607, 1558, 1519, 1464, 1407, 1365, 1327, 1283, 1224, 1169, 1085, 1066, 1026, 1016, 965, 902, 848, 826, 796, 744, 712, 658. C₈H₈O₄ (168.15): C 57.1, H 4.80 (%); found: C 56.7, H 5.35 (%).

1-(2,4,6-Trihydroxyphenyl)decanone (10CO-PHG)

Column was run with cycloh/ethyl acetate 5:1.

M.p: 130-131 °C (cycloh). ¹H-NMR (300 MHz, DMSO): $\delta = 12.22$ (s, 2H), 10.30 (s, 1H), 5.79 (s, 2H), 2.96 (t, 2H), 1.29 (m, 14H), 0.85 (t, 3H) ppm. ¹³C-NMR (75 MHz, DMSO): $\delta = 205.20$, 164.41, 164.12, 103.69, 94.57, 43.00, 31.22, 28.90, 28.86, 28.84, 28.61, 24.38, 22.03, 13.89 ppm. MS (ESI): m/z (%): positive: calc. C₁₆H₂₄O₄+H⁺: 281.1747, found: 281.1744. FT-IR (ATR): v (cm⁻¹) = 3212, 2966, 2934, 2872, 2767, 1620, 1614, 1556, 1531, 1520, 1507, 1469, 1464, 1446, 1417, 1371, 1353, 1306, 1240, 1144, 1092, 1063, 1007, 987, 811, 779, 750, 732, 667. C₁₆H₂₄O₄ (280.36): C 68.5, H 8.63 (%); found: C 68.4, H 8.45 (%).

2-Halogeno-1,3,5-trimethoxybenzene and 2-Halogenobenzene-1,3,5-triol (hal-PHG)

Step 1: To a solution of 1 (1.00 g, 5.95 mmol, 1.0 eq.) in DCM (10 mL) was added NXS (1.0 eq., X = Cl, Br), and the reaction mixture was refluxed gently for 12 h. The reaction mixture was then diluted with H₂O, extracted with DCM, the organic solvent combined and dried with MgSO₄. After removing the solvent under vacuum the crude product was purified on SiO₂ with cyclohexane/ethyl actate 1:1 yielded as white solid.

Step 2: At 0 °C BBr₃ (7.0 eq.) was added dropwise to a solution of the corresponding halogenated trimethoxybenzene derivative (1.0 eq.) in DCM (0.3 M). The solution was stirred at room temperature for 17 h. After the reaction was completed, the solution was cooled with an ice bad and the reaction quenched with H₂O. The aqueous mixture was extracted with Et₂O, the organic phase combined, dried with Na₂SO₄ and removed under vacuum.

2-Chloro-1,3,5-trimethoxybenzene

Yield: 95 %. M.p: 89-90 °C (DCM). ¹H-NMR (300 MHz, DMSO): $\delta = 6.34$ (s, 2H), 3.82 (s, 6H), 3.79 (s,3H) ppm. ¹³C-NMR (75 MHz, DMSO): $\delta = 159.32$, 156.01, 100.89, 91.84, 56.15, 55.52 ppm. MS (ESI): m/z (%): positive: calc. C₉H₁₁ClO₃+H⁺: 203.0469, found: 203.0466. FT-IR (ATR): v (cm⁻¹) = 3076, 3026, 3008, 2972, 2947, 2913, 2885, 2840, 1771, 1720, 1688, 1584, 1563, 1485, 1466, 1436, 1419, 1350, 1296, 1264, 1229, 1209, 1188, 1161, 1126, 1041, 1032, 951, 918, 851, 802, 780, 704, 679, 662.

2-Bromo-1,3,5-trimethoxybenzene

Yield: 95 %. M.p: 94-96 °C (DCM). ¹H-NMR (300 MHz, DMSO): $\delta = 6.33$ (s, 2H), 3.81 (s, 6H), 3.79 (s, J = 13.0 Hz, 3H) ppm. ¹³C-NMR (75 MHz, DMSO): $\delta = 160.32$, 156.93, 91.98, 90.64, 56.24, 55.51 ppm. MS (ESI): m/z (%): positive: calc. C₉H₁₁BrO₃+H⁺: 246.9964, found: 246.9962. FT-IR (ATR): v (cm⁻¹) = 3078, 3007, 3008, 2972, 2948 ,2885, 2841, 1773, 1713, 1693, 1584, 1519, 1486, 1466, 1436, 1419, 1351, 1296, 1264, 1229, 1209, 1188, 1161, 1126, 1041, 1032, 951, 918, 852, 802, 780, 704, 679, 662.

2-Chlorobenzene-1,3,5-triol (Cl-PHG)

Yield: 90 %. M.p: 214-218 °C (decomp.). ¹H-NMR (300 MHz, DMSO): $\delta = 9.60$ (s, 2H), 9.15 (s, 1H), 5.89 (s, 2H) ppm. ¹³C-NMR (75 MHz, DMSO): $\delta = 156.36$, 154.35, 97.75, 94.82 ppm. MS (ESI): m/z (%): negative: calc. C₆H₅ClO₃-H⁻: 158.9854, found: 158.9861. FT-IR (ATR): v (cm⁻¹) = 3456, 3387, 3332, 3077, 2913, 1611, 1512, 1459, 1390, 1370, 1293, 1266, 1233, 1175, 1142, 1035, 1004, 823, 810, 727, 657. C₆H₅ClO₃ (160.55): C 44.9, H 3.14 (%); found: C 44.2, H 3.17 (%).

2-Bromobenzene-1,3,5-triol (Br-PHG)

After the extraction, the raw product was purified on SiO₂ with DCM:MeOH.

Yield: 60 %. M.p: 155-158 °C (decomp.). ¹H-NMR (300 MHz, DMSO): $\delta = 9.67$ (s, 2H), 9.18 (s, 1H), 5.90 (s, 2H) ppm. ¹³C-NMR (75 MHz, DMSO): $\delta = 157.30$, 155.39, 94.74, 87.46 ppm. MS (ESI): m/z (%): negative: calc. C₆H₅BrO₃⁻: 202.9349, found: 202.9355. FT-IR (ATR): v (cm⁻¹) = 3398, 3304, 3086, 2921, 2652, 1629, 1603, 1533, 1503, 1474, 1454, 1401, 1367, 1283, 1237, 1180, 1160, 1148, 1034, 1002, 809, 697.

(E)-2,4,6-Trihydroxybenzaldehyde oxime (NO_H-PHG)

A suspension of hydroxylamin hydrochlorid (2.09g, 32.4 mmol, 5.0 eq.) and K_2CO_3 (2.69 g, 19.5 mmol, 3.0 eq.) in dried ethanol (18 mL) was prepared and added to a solution of 1-(2,4,6-trihydroxyphenyl)ethanone (1.0 g, 6.48 mmol, 1.0 eq.) in dried ethanol (5 mL) under protective protective gas. The suspension was heated to 70 °C and stirred for 5 h. After cooling, the precipitation was isolated, washed with cold ethanol and acidified with 50 % HCl_{aq}. The solid residue was filtered off, and the filtrate extracted with Et₂O. Afterwards, the organic solvent was combined, dried with Na₂SO₄ and removed under vacuum yielded to a beige powder.

Yield: 95%. M.p: 189-191 °C (Et₂O). ¹H-NMR (300 MHz, DMSO): $\delta = 10.97$ (s, 1H), 10.19 (s, 2H), 9.62 (s, 1H), 8.31 (s, 1H), 5.81 (s, 2H) ppm. ¹³C-NMR (75 MHz, DMSO): $\delta = 160.42$, 158.36, 146.82, 97.53, 94.27 ppm. MS (ESI): m/z (%): negative: calc. C₇H₇NO₄-H⁺: 168.0302, found: 168.0308. FT-IR (ATR): v (cm⁻¹) = 3905, 3841, 3677, 3651, 3553, 327, 3031, 3013, 2979, 2953, 2845, 2814, 2642, 2585, 2445, 2323, 2275, 2185, 2163, 1980, 1910, 1848, 1794, 1757, 1742, 1689, 1648, 1605, 1593, 1565, 1540, 1534, 1489, 1475, 1468, 1458, 1441, 122, 1412, 1381, 1354, 1327, 1281, 1233, 1213, 1192, 1163, 1135, 1105, 1073, 1042, 1035, 1010, 955, 921, 905, 859, 798, 780, 745, 702, 685, 662. C₇H₇NO₄ (169.14): C 49.7, H 4.17, N 8.28 (%); found: C 49.7, H 4.39, N 7.86 (%).

6 Synthesis and Analysis of the HBAs

The hydrogen-bonded assemblies were obtained by dissolving the functionalized core moieties (1.0 eq.) and the side chain in the corresponding (2.0/3.0 eq. **Ap**) separately in acetone. The solutions were subsequently combined, and after stirring the mixture for 30 min, the solvent was removed under reduced pressure at 40°C. The assemblies were then dried under vacuum for at least 10 h, yielding the desired assemblies in quantitative yields. All samples were grinded and analyzed regarding the structural and thermal properties. The single crystals were obtained in acetone and by slowly evaporating the solvent.

6.1 Series of *1C*-PHG assemblies

[(E)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/1C-PHG]_{3:1} (1C-PHG···(Ap-6)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.7, 1.5 Hz, 6H), 8.02 - 7.91 (m, 6H), 7.77 (dd, J = 4.7, 1.6 Hz, 6H), 7.13 - 7.03 (m, 6H), 5.86 (s, 2H), 4.09 (t, J = 6.4 Hz, 6H), 1.93 (s, 3H), 1.81 (dq, J = 12.7, 6.5 Hz, 6H), 1.59 - 1.45 (m, 6H), 1.45 - 1.30 (m, 12H), 0.93 (t, J = 7.0 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.93$, 159.59, 157.85, 156.87, 151.89, 148.21,

126.95, 117.86, 116.24, 103.69, 95.57, 69.80, 32.87, 30.38, 26.93, 23.80, 14.50, 8.09 ppm. FT-IR (ATR): v (cm⁻¹) = 3045, 2938, 2925, 2869, 2766, 2659, 2325, 2114, 1909, 1602, 1593, 1581, 1570, 1538, 1499, 1474, 1453, 14171405, 1335, 1320, 1298, 1257, 1194, 1177, 1140, 1106, 1093, 1051, 1021, 1003, 965, 925, 899, 864, 838, 810, 796, 762, 738, 728.

[(E)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/1C-PHG]_{3:1} (1C-PHG···(Ap-8)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.7, 1.5 Hz, 6H), 8.03 – 7.89 (m, 6H), 7.76 (dd, J = 4.7, 1.5 Hz, 6H), 7.08 (d, J = 9.0 Hz, 6H), 5.86 (s, 2H), 4.07 (t, J = 6.4 Hz, 6H), 1.93 (s, 3H), 1.87 – 1.73 (m, 6H), 1.58 – 1.43 (m, 6H), 1.42 – 1.24 (m, 24H), 0.90 (t, J = 6.6 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.92$, 159.57, 157.85, 156.87, 151.89, 148.20, 126.96, 117.86, 116.24, 103.69, 95.57, 69.80, 33.12, 30.61, 30.53, 30.41, 27.26, 23.85, 14.57, 8.10 ppm. FT-IR (ATR): v (cm⁻¹) = 3053, 2920, 2853, 2654, 2357, 1602, 1592, 1583, 1540, 1499, 1470, 1454, 1417, 1406, 1335, 1321, 1297, 1253, 1207, 1194, 1174, 1159, 1140, 1106, 1089, 1046, 1024, 1012, 1001, 965, 939, 925, 838, 815, 796, 759, 737, 721, 665.

[(E)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/1C-PHG]_{3:1} (1C-PHG···(Ap-9)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.73$ (dd, J = 4.7, 1.6 Hz, 6H), 8.05 – 7.94 (m, 6H), 7.80 (dd, J = 4.6, 1.6 Hz, 6H), 7.18 – 7.05 (m, 6H), 5.87 (s, 2H), 4.12 (t, J = 6.4 Hz, 6H), 1.95 (s, 3H), 1.84 (dq, J = 13.3, 6.5 Hz, 6H), 1.61 – 1.47 (m, 6H), 1.46 – 1.22 (m, 30H), 0.92 (t, J = 6.8 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.95$, 159.61, 157.85, 156.87, 151.91, 148.24, 126.96, 117.86, 116.26, 103.66, 95.57, 69.81, 33.19, 30.82, 30.64, 30.54, 30.41, 27.25, 23.87, 14.57, 8.08 ppm. FT-IR (ATR): v (cm⁻¹) = 3043, 2955, 2938, 2919, 2851, 2659, 2359, 2337, 1633, 1602, 1593, 1584, 1571, 1532, 1499, 1474, 1454, 1417, 1407, 1334, 1320, 1299, 1254, 1192, 1172, 1140, 1103, 1084, 1050, 1038, 1012, 1001, 982, 961, 940, 926, 896, 863, 838, 814, 796, 762, 745, 736, 718, 666.

[(E)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/1C-PHG]_{3:1} (1C-PHG···(Ap-10)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (d, J = 6.0 Hz, 6H), 7.96 (d, J = 8.9 Hz, 6H), 7.76 (d, J = 6.0 Hz, 6H), 7.08 (d, J = 9.0 Hz, 6H), 5.86 (s, 2H), 4.08 (t, J = 6.4 Hz, 6H), 1.93 (s, 3H), 1.89 – 1.72 (m, 6H), 1.58 – 1.44 (m, 7H), 1.44 – 1.16 (m, 37H), 0.98 – 0.80 (m, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.80$, 159.47, 157.72, 156.72, 151.76, 148.10, 126.89, 117.81, 116.16, 103.68, 95.53, 69.71, 33.11, 30.75, 30.72, 30.53, 30.50, 30.32, 27.16, 23.78, 14.56, 8.08 ppm. FT-IR (ATR): v (cm⁻¹) = 3045, 2919, 2869, 2851, 2659, 2361, 1633, 1602, 1592, 1583, 1536,

1499, 1468, 1454, 1417, 1406, 1334, 1320, 1298, 1254, 1192, 1170, 1140, 1103, 1051, 1014, 1001, 941, 926, 836, 798, 761, 736, 719, 667.

6.2 Series of 2C-PHG assemblies

[(E)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/2C-PHG]_{3:1} (2C-PHG···(Ap-6)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.7, 1.6 Hz, 6H), 8.01 – 7.93 (m, 6H), 7.77 (dd, J = 4.6, 1.6 Hz, 6H), 7.15 – 7.00 (m, 6H), 5.84 (s, J = 13.2 Hz, 2H), 4.09 (t, J = 6.4 Hz, 6H), 2.61 – 2.41 (m, 2H), 1.89 – 1.74 (m, 6H), 1.58 – 1.44 (m, 6H), 1.42 – 1.29 (m, 12H), 1.04 (t, J = 7.4 Hz, 3H), 0.93 (t, J = 7.1 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.94$, 159.60, 157.66, 156.91, 152.89, 151.90, 148.23, 138.96, 126.95, 117.86, 116.25, 110.56, 95.67, 69.81, 32.87, 30.38, 26.93, 23.80, 17.05, 14.65, 14.50 ppm. FT-IR (ATR): v (cm⁻¹) = 3046, 2926, 2868, 2658, 2116, 1939, 1593, 1581, 1539, 1499, 1466, 1452, 1406, 1319, 1299, 1252, 1177, 140, 1105, 1050, 1023, 996, 965, 935, 926, 899, 868837, 810, 795, 737, 725, 665.

[(E)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/2C-PHG]_{3:1} (2C-PHG···(Ap-8)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.6, 1.6 Hz, 6H), 8.03 – 7.88 (m, 6H), 7.77 (dd, J = 4.6, 1.6 Hz, 6H), 7.13 – 7.00 (m, 6H), 5.84 (s, J = 13.3 Hz, 2H), 4.09 (t, J = 6.4 Hz, 6H), 2.51 (q, J = 7.5 Hz, 2H), 1.89 – 1.76 (m, 6H), 1.49 (d, J = 7.3 Hz, 6H), 1.43 – 1.24 (m, 24H), 1.04 (t, J = 7.4 Hz, 3H), 0.98 – 0.83 (m, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.94$, 159.60, 157.66, 156.91, 152.89, 151.90, 148.23, 138.96, 126.95, 117.86, 116.25, 110.56, 95.67, 69.81, 32.87, 30.38, 26.93, 23.80, 17.05, 14.65, 14.50 ppm. FT-IR (ATR): v (cm⁻¹) = 3046, 2926, 2868, 2658, 2116, 1939, 1593, 1581, 1539, 1499, 1466, 1452, 1406, 1319, 1299, 1252, 1177, 1140, 1105, 1050, 1023, 996, 965, 935, 926, 899, 868, 837, 810, 795, 737, 725, 665.

[(E)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/2C-PHG]_{3:1} (2C-PHG···(Ap-9)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.7, 1.6 Hz, 6H), 8.04 – 7.91 (m, 6H), 7.77 (dd, J = 4.6, 1.6 Hz, 6H), 7.16 – 7.01 (m, 6H), 5.84 (s, J = 13.3 Hz, 2H), 4.10 (t, J = 6.4 Hz, 6H), 2.51 (q, J = 7.4 Hz, 2H), 1.89 – 1.74 (m, 6H), 1.58 – 1.44 (m, 6H), 1.45 – 1.12 (m, 30H), 1.10 – 0.95 (m, 3H), 0.90 (t, J = 6.8 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.95$, 159.62, 157.64, 156.91, 151.92, 148.25, 126.95, 117.86, 116.27, 110.58, 95.67, 69.82, 50.00, 49.71, 49.43, 49.15, 48.86, 48.58, 48.30, 33.18, 30.81, 30.63, 30.52, 30.41, 27.24, 23.86, 17.04, 14.64, 14.55 ppm. FT-IR (ATR): v (cm⁻¹) = 3051, 2922, 2852, 2652, 2320, 1939, 1726, 1603, 1592, 1583, 1540, 1500, 1471, 1453, 1417, 1405, 1333, 1319, 1299, 1253, 1140, 1105, 1050, 1010, 997, 925, 897, 866, 837, 813795, 756, 737, 722, 665.

[(E)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/2C-PHG]_{3:1} (2C-PHG···(Ap-10)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.6, 1.6 Hz, 6H), 8.03 – 7.93 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.16 – 7.05 (m, 6H), 5.84 (s, 2H), 4.10 (t, J = 6.4 Hz, 6H), 2.51 (q, J = 7.5 Hz, 2H), 1.90 – 1.75 (m, 6H), 1.50 (d, J = 6.9 Hz, 6H), 1.33 (d, J = 16.2 Hz, 36H), 1.03 (t, J = 7.4 Hz, 3H), 0.96 – 0.81 (m, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.96$, 159.63, 157.66, 156.94, 151.92, 148.26, 126.95, 117.86, 116.28, 110.57, 95.68, 69.82, 33.20, 30.84, 30.81, 30.61, 30.58, 30.40, 27.24, 23.86, 14.56 ppm. FT-IR (ATR): v (cm⁻¹) = 3046, 2926, 2868, 2658, 2116, 1939, 1593, 1581, 1539, 1499, 1466, 1452, 1406, 1319, 1299, 1252, 1177, 1140, 1105, 1050, 1023, 996, 965, 935, 926, 899, 868, 837, 810, 795, 737, 725, 665.

6.3 Series of *10C*-PHG assemblies

[(E)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/10C-PHG]_{3:1} (10C-PHG···(Ap-6)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.7, 1.6 Hz, 6H), 8.01 – 7.93 (m, 6H), 7.77 (dd, J = 4.6, 1.6 Hz, 6H), 7.13 – 7.04 (m, 6H), 5.84 (s, 2H), 4.09 (t, J = 6.4 Hz, 6H), 2.55 – 2.37 (m, 2H), 1.89 – 1.76 (m, 6H), 1.60 – 1.18 (m, 34H), 1.03 – 0.85 (m, 12H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.94$, 159.61, 157.87, 156.87, 151.91, 148.24, 126.95, 117.85, 116.26, 109.27, 95.64, 69.82, 33.23, 32.87, 31.00, 30.96, 30.93, 30.79, 30.63, 30.38, 26.93, 23.87, 23.80, 14.57, 14.49 ppm. FT-IR (ATR): v (cm⁻¹) = 3068, 2921, 2852, 2651, 2105, 1603, 1584, 1536, 1499, 1469, 1454, 1417, 1406, 1389, 1320, 1299, 1252, 1192, 1140, 1109, 1078, 1052, 1016, 1001, 966, 927, 839, 810, 796, 736, 723.

[(*E*)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/*10C*-PHG]_{3:1} (*10C*-PHG···(Ap-8)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.6, 1.6 Hz, 6H), 8.02 – 7.93 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.15 – 7.03 (m, 6H), 5.84 (s, 2H), 4.10 (t, J = 6.4 Hz, 6H), 2.53 – 2.41 (m, 2H), 1.91 – 1.76 (m, 6H), 1.68 – 1.06 (m, 46H), 1.02 – 0.76 (m, 12H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.67$, 159.35, 157.56, 156.59, 151.64, 147.97, 126.67, 117.57, 115.99, 108.99, 95.35, 69.54, 32.95, 32.84, 32.80, 30.72, 30.70, 30.67, 30.65, 30.35, 30.31, 30.24, 30.13, 26.98, 23.59, 23.56, 14.26, 14.21 ppm. FT-IR (ATR): v (cm⁻¹) = 3136, 3041, 2921, 2852, 2653, 2100, 1603, 1585, 1537, 1499, 1469, 1453, 1407, 1319, 1299, 1254, 1138, 1108, 1044, 1000, 967, 926, 875, 840, 812, 796, 760, 737, 723.

[(E)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/10C-PHG]_{3:1} (10C-PHG···(Ap-9)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.7, 1.6 Hz, 6H), 8.04 – 7.92 (m, 6H), 7.77 (dd, J = 4.6, 1.6 Hz, 6H), 7.14 – 7.04 (m, 6H), 5.84 (s, 2H), 4.09 (t, J = 6.4 Hz, 6H), 2.54 – 2.41 (m, 2H), 1.88 – 1.75 (m, 6H), 1.69 – 1.04 (m, 52H), 0.90 (td, J = 6.7, 3.7 Hz, 12H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.95$, 159.61, 157.87, 156.87, 151.91, 148.24, 126.95, 117.86, 116.27, 109.26, 95.63, 69.81, 33.23, 33.18, 33.12, 31.00, 30.96, 30.94, 30.81, 30.63, 30.60, 30.53, 30.41, 27.24, 23.86, 14.56 ppm. FT-IR (ATR): v (cm⁻¹) = 3564, 3174, 2919, 2851, 2658, 2321, 2114, 1597, 1583, 1541, 1499, 1469, 1453, 1417, 1408, 1318, 1298, 1255, 1225, 1209, 1176, 1140, 1119, 1108, 1081, 1036, 1014, 1005, 989, 925, 896, 868, 840, 795, 737, 722, 664.

[(*E*)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/*10C*-PHG]_{3:1} (*10C*-PHG···(Ap-10)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.6, 1.6 Hz, 6H), 8.03 - 7.92 (m, 6H), 7.77 (dd, J = 4.6, 1.6 Hz, 6H), 7.16 - 7.02 (m, 6H), 5.84 (s, 2H), 4.09 (t, J = 6.4 Hz, 6H), 2.53 - 2.38 (m,

2H), 1.88 - 1.75 (m, 6H), 1.60 - 1.15 (m, 58H), 0.89 (dd, J = 6.7, 5.2 Hz, 12H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.94$, 159.60, 157.87, 156.87, 151.91, 148.24, 126.96, 117.86, 116.26, 109.25, 95.62, 69.81, 33.20, 31.01, 30.96, 30.94, 30.85, 30.81, 30.62, 30.58, 30.41, 27.24, 23.87, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3562, 3327, 2955, 2919, 2872, 2851, 2778, 2658, 23221597, 1581, 1541, 1499, 1467, 1452, 1419, 1407, 1377, 1320, 1299, 1254, 1208, 1177, 1142, 1118, 1074, 1050, 1014, 1005, 987, 926, 868, 837, 813, 797, 738, 720.

6.4 Series of 1CO-PHG assemblies

[(E)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/1CO-PHG]_{2:1} (1CO-PHG···(Ap-6)₂)

¹H-NMR (300 MHz, MeOD): $\delta = 10.01$ (s, 1H), 8.71 (dd, J = 4.7, 1.6 Hz, 6H), 8.05 – 7.92 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.16 – 7.04 (m, 6H), 5.77 (s, 2H), 4.10 (t, J = 6.4 Hz, 6H), 1.88 – 1.77 (m, 6H), 1.58 – 1.46 (m, 6H), 1.44 – 1.29 (m, 12H), 0.94 (t, J = 7.1 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 192.74$, 168.94, 165.97, 164.93, 159.58, 151.89, 148.21, 126.95, 117.86, 116.24, 106.41, 95.31, 69.80, 32.87, 30.38, 26.93, 23.80, 14.50 ppm. FT-IR (ATR): v (cm⁻¹) = 3078, 2945, 2867, 2773, 2744, 2574, 1644, 1579, 1570, 1496, 1464, 1449, 1408, 1377, 1316, 1293, 1251, 1228, 1200, 1167, 1139, 1106, 1083, 1058, 1045, 1022, 1003, 989, 965, 942, 921, 897, 864, 834, 819, 796, 724, 664, 631, 604.

[(E)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/1CO-PHG]_{3:1} (1CO-PHG···(Ap-6)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 10.01$ (s, 1H), 8.70 (dd, J = 4.7, 1.6 Hz, 4H), 8.01 – 7.92 (m, 4H), 7.77 (dd, J = 4.7, 1.6 Hz, 4H), 7.14 – 7.00 (m, 4H), 5.77 (s, 2H), 4.09 (t, J = 6.4 Hz, 4H), 1.88 – 1.75 (m, 4H), 1.58 – 1.45 (m, 4H), 1.43 – 1.31 (m, 8H), 0.93 (t, J = 7.0 Hz, 6H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 192.74$, 168.94, 165.97, 164.93, 159.58, 151.89, 148.21, 126.95, 117.86, 116.24, 106.41, 95.31, 69.80, 32.87, 30.38, 26.93, 23.80, 14.50 ppm. FT-IR (ATR): v (cm⁻¹) = 3032, 2937, 2857, 2749, 2648, 2588, 2325, 2113, 1987, 1882, 1703, 1645, 1597, 1583, 1498, 1469, 1450, 1417, 14071393, 1378, 1334, 1317, 1295, 1253, 1228, 1201, 1168, 1140, 1108, 1084, 1059, 1047, 1024, 1003, 989, 965, 942, 923, 898, 864, 836, 820, 796, 752, 726, 673, 665.

[(E)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/1CO-PHG]_{2:1} (1CO-PHG···(Ap-8)₂)

¹H-NMR (300 MHz, MeOD): δ = 10.01 (s, 1H), 8.71 (dd, *J* = 4.7, 1.6 Hz, 4H), 8.03 – 7.93 (m, 4H), 7.78 (dd, *J* = 4.7, 1.6 Hz, 4H), 7.15 – 7.03 (m, 4H), 5.77 (s, 2H), 4.10 (t, *J* = 6.4 Hz, 4H), 1.82 (dq, *J* = 13.0, 6.6 Hz, 4H), 1.56 – 1.44 (m, 4H), 1.43 – 1.25 (m, 16H), 0.96 – 0.84 (m, 6H) ppm. ¹³C-NMR (75 MHz, MeOD): δ = 164.97, 159.67, 158.10, 155.69, 151.81, 148.23, 126.97,

117.90, 116.26, 100.38, 96.45, 69.81, 33.12, 30.60, 30.52, 30.41, 27.25, 23.84, 14.55 ppm. FT-IR (ATR): v (cm⁻¹) = 2943, 2918, 2869, 2852, 2749, 1836, 1645, 1596, 1580, 1497, 1466, 1449, 1418, 1408, 1393, 1377, 1318, 1294, 1252, 1229, 1201, 1169, 1140, 1106, 1084, 1032, 999, 941, 921, 835, 796, 758, 736, 720, 674, 632, 605.

[(E)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/1CO-PHG]_{3:1} (1CO-PHG···(Ap-8)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 10.01$ (s, 1H), 8.71 (dd, J = 4.7, 1.6 Hz, 6H), 8.03 – 7.91 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.14 – 7.03 (m, 6H), 5.77 (s, 2H), 4.11 (t, J = 6.4 Hz, 6H), 1.89 – 1.76 (m, 6H), 1.59 – 1.22 (m, 30H), 1.00 – 0.76 (m, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.97$, 159.67, 158.10, 155.69, 151.81, 148.23, 126.97, 117.90, 116.26, 100.38, 96.45, 69.81, 33.12, 30.60, 30.52, 30.41, 27.25, 23.84, 14.55 ppm. FT-IR (ATR): v (cm⁻¹) = 3035, 3002, 2941, 2917, 2851, 2750, 2647, 2584, 2325, 2113, 2086, 1987, 1873, 1697, 1645, 1597, 1582, 1569, 1538, 1497, 1467, 1451, 1408, 1393, 1377, 1344, 1317, 1295, 1253, 1229, 1201, 1168, 1141, 1106, 1084, 1063, 1039, 1024, 999, 964, 939, 923, 864, 835, 820, 795, 759, 736, 721, 673, 665.

[(E)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/1CO-PHG]_{2:1} (1CO-PHG···(Ap-9)₂)

¹H-NMR (300 MHz, MeOD): $\delta = 10.01$ (s, 1H), 8.71 (dd, J = 4.7, 1.6 Hz, 4H), 8.01 – 7.92 (m, 4H), 7.77 (dd, J = 4.7, 1.6 Hz, 4H), 7.14 – 7.03 (m, 4H), 5.77 (s, 2H), 4.09 (t, J = 6.4 Hz, 4H), 1.89 – 1.75 (m, 4H), 1.59 – 1.44 (m, 4H), 1.43 – 1.23 (m, 20H), 0.90 (t, J = 6.7 Hz, 6H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 192.74$, 169.01, 165.91, 164.95, 159.61, 151.91, 148.23, 126.96, 117.86, 116.26, 106.42, 95.32, 69.81, 33.18, 30.63, 30.53, 30.41, 27.25, 23.87, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 2919, 2869, 2848, 2749, 1644, 1594, 1580, 1496, 1467, 1449, 1407, 1377, 1317, 1293, 1257, 1228, 1201, 1168, 1138, 1107, 1083, 1039, 1004, 963, 921, 835, 796, 733, 719, 664, 631, 605.

[(E)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/1CO-PHG]_{3:1} (1CO-PHG···(Ap-9)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 10.01$ (s, 1H), 8.71 (dd, J = 4.6, 1.6 Hz, 6H), 8.02 – 7.95 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.14 – 7.06 (m, 6H), 5.77 (s, 2H), 4.11 (t, J = 6.4 Hz, 6H), 1.83 (dq, J = 12.7, 6.5 Hz, 6H), 1.59 – 1.46 (m, 6H), 1.37 (dd, J = 19.3, 8.1 Hz, 30H), 0.90 (t, J = 4.6 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 192.74$, 169.01, 165.91, 164.95, 159.61, 151.91, 148.23, 126.96, 117.86, 116.26, 106.42, 95.32, 69.81, 33.18, 30.63, 30.53, 30.41, 27.25, 23.87, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3036, 2940, 2918, 2850, 2752, 2647, 2584, 2325, 2112, 1987, 1873, 1697, 1645, 1597, 1582, 1569, 1557, 1538, 1498, 1468, 1451, 1408, 1393,

1377, 1356, 1317, 1295, 1255, 1229, 1201, 1168, 1140, 1107, 1084, 1032, 1005, 988, 965, 939, 922, 864, 835, 820, 795, 758, 736, 720, 673, 665.

[(E)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/1CO-PHG]_{2:1} (1CO-PHG···(Ap-10)₂)

¹H-NMR (300 MHz, MeOD): $\delta = 10.01$ (s, 1H), 8.71 (dd, J = 4.7, 1.6 Hz, 4H), 8.04 – 7.92 (m, 4H), 7.78 (dd, J = 4.7, 1.6 Hz, 4H), 7.16 – 6.98 (m, 4H), 5.77 (s, 2H), 4.10 (t, J = 6.4 Hz, 4H), 1.82 (dq, J = 13.0, 6.5 Hz, 4H), 1.58 – 1.44 (m, 4H), 1.44 – 1.23 (m, 24H), 0.90 (t, J = 6.7 Hz, 6H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 192.75$, 164.95, 159.62, 151.91, 148.24, 126.96, 117.86, 116.27, 106.44, 95.31, 69.81, 33.20, 30.84, 30.81, 30.61, 30.40, 27.24, 23.87, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 2943, 2916, 2871, 2849, 2749, 2576, 1833, 1645, 1594, 1581, 1497, 1467, 1448, 1407, 1377, 1316, 1294, 1257, 1228, 1201, 1168, 1138, 1108, 1083, 1047, 1017, 1002, 921, 863, 835, 796, 735, 719, 673, 631, 605.

[(E)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/1CO-PHG]_{3:1} (1CO-PHG···(Ap-10)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 10.01$ (s, 1H), 8.71 (dd, J = 4.7, 1.6 Hz, 6H), 8.06 – 7.88 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.15 – 7.02 (m, 6H), 5.77 (s, 2H), 4.11 (t, J = 6.4 Hz, 6H), 1.90 – 1.73 (m, 6H), 1.60 – 1.45 (m, 6H), 1.45 – 1.14 (m, 36H), 0.98 – 0.80 (m, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 192.75$, 164.95, 159.62, 151.91, 148.24, 126.96, 117.86, 116.27, 106.44, 95.31, 69.81, 33.20, 30.84, 30.81, 30.61, 30.40, 27.24, 23.87, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3034, 3004, 2939, 2917, 2849, 2749, 2647, 2583, 2485, 2333, 2112, 1986, 1874, 1813, 1697, 1645, 1598, 1582, 1569, 1557, 1538, 1498, 1468, 1452, 1417, 1408, 1393, 1377, 1356, 1317, 1295, 1254, 1229, 1201, 1169, 1141, 1107, 1084, 1024, 999, 988, 965, 940, 923, 864, 835, 820, 795, 759, 736, 720, 673, 665.

6.5 Series of 2CO-PHG assemblies

[(*E*)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/2*CO*-PHG]_{2:1} (2*CO*-PHG···(Ap-6)₂)

¹H-NMR (300 MHz, MeOD): $\delta = 8.69$ (dd, J = 4.7, 1.5 Hz, 4H), 8.04 – 7.86 (m, 4H), 7.75 (dd, J = 4.7, 1.6 Hz, 4H), 7.05 (dd, J = 9.6, 2.5 Hz, 4H), 5.80 (s, 2H), 4.06 (t, J = 6.5 Hz, 4H), 2.59 (s, 3H), 1.85 – 1.72 (m, 4H), 1.47 (dd, J = 14.8, 7.0 Hz, 4H), 1.43 – 1.24 (m, 8H), 0.92 (t, J = 6.9 Hz, 6H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 204.67$, 166.43, 166.39, 166.04, 165.98, 164.89, 159.52, 151.86, 148.17, 126.94, 117.85, 116.21, 105.78, 95.77, 69.78, 32.86, 30.37, 26.92, 23.79, 14.51 ppm. FT-IR (ATR): v (cm⁻¹) = 3032, 2935, 2856, 2746, 2654, 2585, 1622, 1595, 1581, 1530, 1497, 1467, 1450, 1407, 1392, 1354, 1336, 1321, 1287, 1203, 1170, 1081, 1060, 1024, 1000, 997, 961, 923, 897, 869, 836, 795, 750, 738, 722, 664, 632, 607.

[(E)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/2CO-PHG]_{3:1} (2CO-PHG···(Ap-6)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.6, 1.6 Hz, 6H), 8.03 – 7.93 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.13 – 7.06 (m, 6H), 5.80 (s, 2H), 4.10 (t, J = 6.4 Hz, 6H), 2.60 (s, 3H), 1.89 – 1.76 (m, 6H), 1.60 – 1.46 (m, 6H), 1.44 – 1.31 (m, 12H), 0.94 (t, J = 7.1 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 204.67$, 166.43, 166.39, 166.04, 165.98, 164.89, 159.52, 151.86, 148.17, 126.94, 117.85, 116.21, 105.78, 95.77, 69.78, 32.86, 30.37, 26.92, 23.79, 14.51 ppm. FT-IR (ATR): v (cm⁻¹) = 3032, 2957, 2936, 2857, 2750, 2653, 2594, 2324, 2114, 1990, 1882, 1697, 1622, 1595, 1582, 1569, 1531, 1497, 1470, 1451, 1417, 1407, 1393, 1384, 1354, 1336, 1322, 1287, 1255, 1203, 1170, 1139, 1109, 1082, 1061, 1025, 1010, 998, 962, 924, 883, 869, 837, 796, 750, 738, 728, 722, 708, 665.

[(*E*)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/2CO-PHG]_{2:1} (2CO-PHG···(Ap-8)₂)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.7, 1.6 Hz, 4H), 8.02 – 7.91 (m, 4H), 7.77 (dd, J = 4.7, 1.6 Hz, 4H), 7.15 – 6.99 (m, 4H), 5.80 (s, 2H), 4.08 (t, J = 6.4 Hz, 4H), 2.59 (s, 3H), 1.81 (dq, J = 12.9, 6.5 Hz, 4H), 1.57 – 1.43 (m, 4H), 1.42 – 1.23 (m, 16H), 0.91 (t, J = 6.8 Hz, 6H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 204.69$, 166.01, 164.93, 159.58, 151.89, 148.21, 126.95, 117.86, 116.24, 105.78, 95.78, 69.80, 33.12, 32.86, 30.60, 30.53, 30.41, 27.26, 23.85, 14.56 ppm. FT-IR (ATR): v (cm⁻¹) = 3075, 2958, 2941, 2919, 2854, 2757, 2645, 2594, 1629, 1594, 1571, 1530, 1497, 1468, 1449, 1418, 1407, 1365, 1320, 1293, 1255, 1204, 1165, 1139, 1107, 1087, 1063, 1039, 1026, 1003, 962, 940, 922, 886, 837, 823, 798, 759, 738, 718, 662, 630, 607.

[(E)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/2CO-PHG]_{3:1} (2CO-PHG···(Ap-8)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.6, 1.6 Hz, 6H), 8.03 – 7.90 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.14 – 7.00 (m, 6H), 5.80 (s, 2H), 4.10 (t, J = 6.4 Hz, 6H), 1.82 (dq, J = 12.8, 6.5 Hz, 6H), 1.52 (dd, J = 14.0, 6.4 Hz, 6H), 1.45 – 1.23 (m, 24H), 0.98 – 0.83 (m, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 204.69$, 166.01, 164.93, 159.58, 151.89, 148.21, 126.95, 117.86, 116.24, 105.78, 95.78, 69.80, 33.12, 32.86, 30.60, 30.53, 30.41, 27.26, 23.85, 14.56 ppm. FT-IR (ATR): v (cm⁻¹) = 3036, 2940, 2918, 2870, 2853, 2758, 2650, 2596, 2325, 2114, 2089, 1807, 1631, 1597, 1582, 1499, 1469, 1454, 1417, 1409, 1395, 1364, 1332, 1321, 1296, 1253, 1204, 1171, 1141, 1106, 1086, 1065, 1040, 1024, 999, 988, 964, 923883, 867, 836, 814, 796, 759, 737, 721, 660.

[(*E*)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/2*CO*-PHG]_{2:1} (2*CO*-PHG···(Ap-9)₂)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.7, 1.6 Hz, 4H), 8.05 – 7.88 (m, 4H), 7.76 (dd, J = 4.7, 1.6 Hz, 4H), 7.22 – 6.89 (m, 4H), 5.80 (s, 2H), 4.07 (t, J = 6.4 Hz, 4H), 2.59 (s, 3H), 1.91 – 1.72 (m, 4H), 1.57 – 1.43 (m, 4H), 1.42 – 1.20 (m, 20H), 0.90 (t, J = 6.7 Hz, 6H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 204.69$, 166.44, 166.06, 166.00, 164.92, 159.56, 151.89, 148.20, 126.96, 117.86, 116.24, 105.79, 95.77, 69.79, 33.18, 32.87, 30.64, 30.53, 30.41, 27.24, 23.86, 14.58 ppm. FT-IR (ATR): v (cm⁻¹) = 3036, 2953, 2940, 2918, 2849, 2757, 2644, 2604, 1629, 1604, 1594, 1581, 1530, 1498, 1469, 1450, 1418, 1406, 1394, 1363, 1319, 1295, 1256, 1204, 1166, 1138, 1107, 1087, 1064, 1037, 1013, 1004, 988, 963, 942, 921, 887, 797, 746, 738, 719, 664, 631, 607.

[(E)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/2CO-PHG]_{3:1} (2CO-PHG···(Ap-9)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.7, 1.6 Hz, 6H), 8.04 – 7.93 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.15 – 7.05 (m, 6H), 5.80 (s, 2H), 4.10 (t, J = 6.4 Hz, 6H), 2.60 (s, 3H), 1.82 (dq, J = 12.8, 6.5 Hz, 6H), 1.59 – 1.46 (m, 6H), 1.44 – 1.18 (m, 30H), 0.91 (dd, J = 7.9, 5.7 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 204.69$, 166.44, 166.06, 166.00, 164.92, 159.56, 151.89, 148.20, 126.96, 117.86, 116.24, 105.79, 95.77, 69.79, 33.18, 32.87, 30.64, 30.53, 30.41, 27.24, 23.86, 14.58 ppm. FT-IR (ATR): v (cm⁻¹) = 3036, 2940, 2918, 2869, 2853, 2759, 2651, 2598, 2336, 2114, 2089, 1798, 1632, 1597, 1582, 1499, 1469, 1454, 1417, 1409, 1395, 1364, 1332, 1321, 1296, 1253, 1204, 1171, 1141, 1106, 1086, 10661040, 1024, 1005, 999, 988, 964, 923, 883, 836, 814, 796, 759, 737, 720, 660.

[(E)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/2CO-PHG]_{2:1} (2CO-PHG···(Ap-10)₂)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.7, 1.6 Hz, 4H), 8.13 – 7.87 (m, 4H), 7.77 (dd, J = 4.7, 1.6 Hz, 4H), 7.23 – 6.97 (m, 4H), 5.80 (s, 2H), 4.09 (t, J = 6.4 Hz, 4H), 2.59 (s, 3H), 1.92 – 1.72 (m, 4H), 1.62 – 1.42 (m, 4H), 1.33 (d, J = 14.6 Hz, 24H), 0.90 (t, J = 6.7 Hz, 6H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 204.69$, 166.07, 166.01, 164.94, 159.59, 151.90, 148.22, 126.96, 117.86, 116.26, 105.78, 95.77, 69.80, 33.20, 30.85, 30.82, 30.62, 30.59, 30.41, 27.24, 23.87, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3059, 2918, 2851, 2745, 2636, 2592, 1622, 1589, 1498, 1465, 1407, 1393, 1377, 1352, 1322, 1294, 1255, 1220, 1200, 1187, 1165, 1142, 1108, 1082, 1058, 1020, 1005, 97, 926, 900, 841, 827, 797, 737, 722, 657, 631, 615.

[(E)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/2CO-PHG]_{3:1} (2CO-PHG···(Ap-10)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.72$ (dd, J = 4.6, 1.6 Hz, 6H), 8.04 – 7.94 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.17 – 7.04 (m, 6H), 5.79 (s, 2H), 4.11 (t, J = 6.4 Hz, 6H), 2.60 (s, 3H), 1.83 (dt, J = 14.5, 6.5 Hz, 6H), 1.58 – 1.45 (m, 6H), 1.44 – 1.16 (m, 36H), 0.95 – 0.83 (m, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 204.69$, 166.07, 166.01, 164.94, 159.59, 151.90, 148.22, 126.96, 117.86, 116.26, 105.78, 95.77, 69.80, 33.20, 30.85, 30.82, 30.62, 30.59, 30.41, 27.24, 23.87, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3036, 2940, 2918, 2870, 2858, 2651, 2596, 2492, 2341, 2115, 2088, 1848, 1632, 1597, 1582, 1499, 1469, 1454, 1409, 1395, 1364, 1332, 1321, 1296, 1253, 1204, 1171, 1141, 1107, 1086, 1068, 1040, 1024, 1005, 1000, 989, 965, 923, 882, 867, 836, 815, 796, 760, 738, 720, 660.

6.6 Series of 10CO-PHG assemblies

[(*E*)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/*10CO*-PHG]_{2:1} (*10CO*-PHG···(Ap-6)₂)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.7, 1.6 Hz, 4H), 8.06 – 7.89 (m, 4H), 7.77 (dd, J = 4.7, 1.6 Hz, 4H), 7.19 – 7.00 (m, 4H), 5.80 (s, 2H), 4.09 (t, J = 6.4 Hz, 4H), 3.09 – 2.93 (m, 2H), 1.89 – 1.74 (m, 4H), 1.71 – 1.58 (m, 2H), 1.55 – 1.43 (m, 4H), 1.40 – 1.27 (m, 18H), 1.01 – 0.83 (m, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 207.66$, 165.95, 165.90, 164.93, 159.59, 151.89, 148.22, 126.95, 117.86, 116.24, 105.52, 95.88, 69.80, 44.97, 33.18, 32.88, 30.80, 30.78, 30.57, 30.38, 26.93, 26.38, 23.86, 23.81, 14.57, 14.50 ppm. FT-IR (ATR): v (cm⁻¹) = 3052, 2920, 2850, 2747, 2624, 2588, 2488, 1621, 1592, 1581, 1498, 1467, 1452, 1408, 1391, 1376, 1327, 1298, 1251, 1221, 1201, 1188, 1168, 1141, 1110, 1081, 1049, 1020, 1004, 968, 923, 889, 829, 797, 758, 738, 722, 659, 632, 614.

[(E)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/10CO-PHG]_{3:1} (10CO-PHG···(Ap-6)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.6, 1.6 Hz, 6H), 8.02 – 7.89 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.15 – 7.04 (m, 6H), 5.80 (s, 2H), 4.10 (t, J = 6.4 Hz, 6H), 3.06 – 2.97 (m, 2H), 1.90 – 1.74 (m, 6H), 1.72 – 1.23 (m, 32H), 1.09 – 0.78 (m, 12H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 207.66$, 165.95, 165.90, 164.93, 159.59, 151.89, 148.22, 126.95, 117.86, 116.24, 105.52, 95.88, 69.80, 44.97, 33.18, 32.88, 30.80, 30.78, 30.57, 30.38, 26.93, 26.38, 23.86, 23.81, 14.57, 14.50 ppm. FT-IR (ATR): v (cm⁻¹) = 3059, 2918, 2851, 2745, 2636, 2592, 1622, 1589, 1498, 1465, 1407, 1393, 1377, 1352, 1322, 1294, 1255, 1220, 1200, 1187, 1165, 1142, 1108, 1082, 1058, 1020, 1006, 971, 926, 900, 841, 827, 797, 737, 722, 657, 631, 615.

[(*E*)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/*10CO*-PHG]_{2:1} (*10CO*-PHG···(Ap-8)₂)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.7, 1.6 Hz, 4H), 8.06 – 7.90 (m, 4H), 7.76 (dd, J = 4.7, 1.6 Hz, 4H), 7.18 – 6.95 (m, 4H), 5.80 (s, 2H), 4.08 (t, J = 6.4 Hz, 4H), 3.10 – 2.95 (m,

2H), 1.91 - 1.74 (m, 4H), 1.72 - 1.56 (m, 2H), 1.55 - 1.43 (m, 4H), 1.39 - 1.21 (m, 26H), 0.99 - 0.80 (m, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 207.64$, 165.95, 165.89, 164.92, 159.56, 151.88, 148.20, 126.95, 117.86, 116.23, 105.52, 95.89, 69.79, 44.97, 33.18, 33.12, 30.81, 30.78, 30.60, 30.56, 30.52, 30.41, 27.25, 26.36, 23.85, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3052, 2920, 2850, 2747, 2624, 2588, 2488, 1621, 1592, 1581, 1498, 1467, 1452, 1408, 1391, 1376, 1327, 1298, 1251, 1221, 1201, 1188, 1168, 1141, 1110, 1081, 1049, 1020, 1004, 968, 923, 889, 829, 797, 758, 738, 722, 659, 632, 614.

[(E)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/10CO-PHG]_{3:1} (10CO-PHG···(Ap-8)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.7, 1.6 Hz, 6H), 8.03 – 7.92 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.15 – 7.05 (m, 6H), 5.80 (s, 2H), 4.10 (t, J = 6.4 Hz, 6H), 3.05 – 2.97 (m, 2H), 1.91 – 1.77 (m, 6H), 1.72 – 1.21 (m, 44H), 1.04 – 0.76 (m, 12H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 207.64$, 165.95, 165.89, 164.92, 159.56, 151.88, 148.20, 126.95, 117.86, 116.23, 105.52, 95.89, 69.79, 44.97, 33.18, 33.12, 30.81, 30.78, 30.60, 30.56, 30.52, 30.41, 27.25, 26.36, 23.85, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3052, 2919, 2851, 2745, 2644, 2590, 2497, 2324, 2110, 1983, 1621, 1583, 1499, 1468, 1455, 1417, 1408, 1389, 1376, 1321, 1297, 1255, 1222, 1201, 1189, 1169, 1141, 1108, 1082, 1045, 1022, 1005, 990, 969, 924, 889, 841, 830, 815, 796, 760, 737, 723, 659.

[(*E*)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/*10CO*-PHG]_{2:1} (*10CO*-PHG···(Ap-9)₂)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.6, 1.6 Hz, 4H), 8.03 – 7.93 (m, 4H), 7.78 (dd, J = 4.6, 1.6 Hz, 4H), 7.16 – 7.01 (m, 4H), 5.80 (s, 2H), 4.10 (t, J = 6.4 Hz, 4H), 3.08 – 2.94 (m, 2H), 1.82 (dq, J = 12.9, 6.5 Hz, 4H), 1.71 – 1.59 (m, 2H), 1.56 – 1.45 (m, 4H), 1.40 – 1.26 (m, 30H), 1.00 – 0.79 (m, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 207.65$, 165.96, 165.91, 164.94, 159.59, 151.90, 148.22, 126.96, 117.86, 116.26, 105.52, 95.89, 69.80, 44.98, 33.20, 30.85, 30.62, 30.59, 30.41, 27.24, 26.38, 23.87, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3056, 2953, 2920, 2850, 2742, 2623, 2576, 2545, 1620, 1582, 1499, 1465, 1453, 1416, 1407, 1390, 1375, 1319, 1298, 1255, 1221, 1197, 1187, 1166, 1141, 1109, 1080, 1050, 1034, 1005, 968, 922, 871, 843, 827, 796, 738, 722, 658, 632, 614.

[(*E*)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/*10CO*-PHG]_{3:1} (*10CO*-PHG···(Ap-9)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.7, 1.6 Hz, 6H), 8.04 – 7.93 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.15 – 7.04 (m, 6H), 5.80 (s, 2H), 4.10 (t, J = 6.4 Hz, 6H), 3.06 – 2.97 (m, 2H), 1.83 (dq, J = 12.9, 6.5 Hz, 6H), 1.72 – 1.18 (m, 50H), 0.98 – 0.83 (m, 12H) ppm. ¹³C-

NMR (75 MHz, MeOD): δ = 207.65, 165.96, 165.91, 164.94, 159.59, 151.90, 148.22, 126.96, 117.86, 116.26, 105.52, 95.89, 69.80, 44.98, 33.20, 30.85, 30.62, 30.59, 30.41, 27.24, 26.38, 23.87, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3054, 2920, 2851, 2745, 2644, 2590, 2324, 2110, 1992, 1726, 1622, 1593, 1583, 1569, 1499, 1467, 1455, 1417, 1408, 1390, 1375, 1319, 1298, 1256, 1222, 1200, 1189, 1169, 1142, 1108, 1081, 1051, 1036, 1014, 1006, 989, 969, 924, 887, 842, 830, 795, 738, 748, 723, 659.

[(*E*)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/*10CO*-PHG]_{2:1} (*10CO*-PHG···(Ap-10)₂)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.7, 1.6 Hz, 4H), 8.07 – 7.88 (m, 4H), 7.77 (dd, J = 4.7, 1.6 Hz, 4H), 7.17 – 6.98 (m, 4H), 5.80 (s, 2H), 4.09 (t, J = 6.4 Hz, 4H), 3.11 – 2.93 (m, 2H), 1.82 (dq, J = 13.2, 6.5 Hz, 4H), 1.72 – 1.58 (m, 2H), 1.58 – 1.43 (m, 4H), 1.39 – 1.22 (m, 34H), 0.90 (t, J = 6.6 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 207.65$, 165.96, 165.91, 164.94, 159.59, 151.90, 148.22, 126.96, 117.86, 116.26, 105.52, 95.89, 69.80, 44.98, 33.20, 30.85, 30.62, 30.59, 30.41, 27.24, 26.38, 23.87, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3081, 2916, 2849, 2755, 2644, 2596, 2481, 1627, 1595, 1581, 1526, 1498, 1467, 1450, 1407, 1377, 1322, 1297, 1257, 1224, 1205, 1192, 1176, 1163, 1139, 1109, 1082, 1049, 1016, 1004, 969, 922, 876, 837, 798, 738, 721, 658, 631, 614.

[(E)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/10CO-PHG]_{3:1} (10CO-PHG···(Ap-10)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (d, J = 6.0 Hz, 6H), 8.07 - 7.89 (m, 6H), 7.78 (dd, J = 4.7, 1.5 Hz, 6H), 7.16 - 6.98 (m, 6H), 5.80 (s, 2H), 4.11 (t, J = 6.4 Hz, 6H), 3.06 - 2.97 (m, 2H), 1.92 - 1.76 (m, 6H), 1.71 - 1.16 (m, 56H), 0.90 (t, J = 6.7 Hz, 12H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 207.65$, 165.96, 165.91, 164.94, 159.59, 151.90, 148.22, 126.96, 117.86, 116.26, 105.52, 95.89, 69.80, 44.98, 33.20, 30.85, 30.62, 30.59, 30.41, 27.24, 26.38, 23.87, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3031, 2917, 2870, 2850, 2757, 2647, 2603, 2324, 2110, 2068, 1907, 1697, 1627, 1603, 1595, 1582, 1528, 1498, 1468, 1451, 1417, 1408, 1377, 1340, 1322, 1309, 1298, 1254, 1224, 1205, 1193, 1177, 1163, 1140, 1108, 1082, 1049, 1016, 1005, 969, 923, 877, 861, 838, 828, 797, 738, 724, 692, 658.

6.7 Series of *Cl*-PHG assemblies

[(E)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/Cl-PHG]_{3:1} (Cl-PHG···(Ap-6)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.7, 1.6 Hz, 6H), 8.01 - 7.92 (m, 6H), 7.77 (dd, J = 4.7, 1.6 Hz, 6H), 7.15 - 7.03 (m, 6H), 5.95 (s, 2H), 4.09 (t, J = 6.4 Hz, 6H), 1.89 - 1.74 (m, 6H), 1.58 - 1.45 (m, 6H), 1.45 - 1.31 (m, 12H), 0.94 (t, J = 7.1 Hz, 9H) ppm. ¹³C-NMR (75

MHz, MeOD): δ = 164.95, 159.62, 158.11, 155.70, 151.87, 148.23, 126.96, 117.87, 116.25, 100.38, 96.45, 69.81, 32.88, 30.38, 26.94, 23.81, 14.50 ppm. FT-IR (ATR): ν (cm⁻¹) = 3053, 2927, 2869, 2856, 2643, 2586, 2336, 1631, 1593, 1581, 1499, 1474, 1453, 1417, 1404, 1336, 1319, 1298, 1259, 1209, 1168, 1139, 1111, 1083, 1059, 1051, 1021, 1006, 1001, 964, 924, 898, 866, 838, 812, 797, 738, 722.

[(E)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/Cl-PHG]_{3:1} (Cl-PHG···(Ap-8)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.7, 1.6 Hz, 6H), 8.05 – 7.92 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.16 – 7.01 (m, 6H), 5.95 (s, 2H), 4.11 (t, J = 6.4 Hz, 6H), 1.83 (dq, J = 13.0, 6.5 Hz, 6H), 1.61 – 1.45 (m, 6H), 1.39 (dd, J = 13.9, 6.6 Hz, 24H), 0.91 (t, J = 6.8 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.97$, 159.67, 158.10, 155.69, 151.81, 148.23, 126.97, 117.90, 116.26, 100.38, 96.45, 69.81, 33.12, 30.60, 30.52, 30.41, 27.25, 23.84, 14.55 ppm. FT-IR (ATR): v (cm⁻¹) = 3045, 2923, 2869, 2855, 2644, 2393, 1593, 1582, 1499, 1473, 1454, 1417, 1404, 1319, 1298, 1252, 1210, 1192, 1168, 1139, 1111, 1082, 1059, 1051, 1022, 1001964, 924, 897, 866, 838, 812, 796, 758, 737, 722.

[(E)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/Cl-PHG]_{3:1} (Cl-PHG···(Ap-9)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.6, 1.6 Hz, 6H), 8.03 – 7.93 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.15 – 7.07 (m, 6H), 5.95 (s, 2H), 4.10 (t, J = 6.4 Hz, 6H), 1.88 – 1.77 (m, 6H), 1.57 – 1.45 (m, 6H), 1.44 – 1.25 (m, 30H), 0.91 (dd, J = 7.9, 5.7 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.97$, 159.66, 158.11, 155.70, 151.85, 148.24, 126.97, 117.89, 116.27, 100.38, 96.45, 69.81, 33.18, 30.81, 30.63, 30.53, 30.41, 27.25, 23.86, 14.56 ppm. FT-IR (ATR): v (cm⁻¹) = 3066, 2954, 2920, 2853, 2648, 1594, 1582, 1571, 1499, 1474, 1468, 1452, 1417, 1404, 1320, 1297, 1255, 1211, 1194, 1177, 1170, 1139, 1108, 1060, 1053, 1008, 1001, 925, 966, 838, 812, 797, 737, 720.

[(E)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/Cl-PHG]_{3:1} (Cl-PHG···(Ap-10)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.6, 1.6 Hz, 6H), 8.04 – 7.92 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.16 – 7.04 (m, 6H), 5.94 (s, 2H), 4.11 (t, J = 6.4 Hz, 6H), 1.83 (td, J = 13.0, 6.6 Hz, 6H), 1.58 – 1.45 (m, 6H), 1.44 – 1.25 (m, 36H), 0.90 (t, J = 6.8 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.96$, 159.63, 158.11, 155.70, 151.89, 148.24, 126.96, 117.87, 116.27, 100.38, 96.45, 69.81, 33.20, 30.84, 30.81, 30.58, 30.40, 27.24, 23.87, 14.56 ppm. FT-IR (ATR): v (cm⁻¹) = 3066, 2919, 2872, 2852, 2636, 1595, 1582, 1572, 1499, 1473, 1468, 1451,

1418, 1403, 1340, 1321, 1297, 1254, 1194, 1169, 1140, 1111, 1061, 1052, 1016, 1008, 1001, 926, 838, 812, 798, 737, 720.

6.8 Series of Br-PHG assemblies

[(E)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/ Br-PHG]_{3:1} (Br-PHG···(Ap-6)₃)

¹H-NMR (600 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.8, 1.3 Hz, 6H), 7.96 (d, J = 8.9 Hz, 6H), 7.76 (dd, J = 4.8, 1.4 Hz, 6H), 7.07 (d, J = 8.9 Hz, 6H), 5.97 (s, J = 15.9 Hz, 2H), 4.12 – 4.02 (m, 6H), 1.85 – 1.75 (m, 6H), 1.50 (dt, J = 14.8, 7.2 Hz, 6H), 1.42 – 1.29 (m, 12H), 0.93 (t, J = 7.0 Hz, 9H) ppm. ¹³C-NMR (151 MHz, MeOD): $\delta = 164.78$, 159.41, 158.91, 156.68, 151.74, 148.04, 126.82, 117.73, 116.08, 96.12, 89.61, 69.64, 32.74, 30.24, 26.80, 23.68, 14.38 ppm. FT-IR (ATR): v (cm⁻¹) = 3053, 2941, 2922, 2870, 2855, 2766, 2637, 2574, 1622, 1594, 1581, 1570, 1538, 1498, 1474, 1449, 1417, 1403, 1381, 1337, 1319, 1298, 1261, 1209, 1167, 1138, 1112, 1085, 1052, 1026, 1007, 1001, 962, 943, 924, 896, 867, 838, 810, 798, 738, 721.

[(E)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/Br-PHG]_{3:1} (Br-PHG···(Ap-8)₃)

¹H-NMR (600 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.6, 1.6 Hz, 6H), 8.00 – 7.96 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.11 – 7.08 (m, 6H), 5.96 (s, J = 3.7 Hz, 2H), 4.10 (t, J = 6.4 Hz, 6H), 1.82 (dt, J = 14.4, 6.5 Hz, 6H), 1.54 – 1.47 (m, 6H), 1.42 – 1.31 (m, 24H), 0.91 (t, J = 7.0 Hz, 9H) ppm. ¹³C-NMR (151 MHz, MeOD): $\delta = 164.95$, 159.60, 159.05, 156.82, 151.91, 148.22, 126.97, 117.88, 116.25, 96.26, 89.75, 69.80, 33.14, 30.62, 30.55, 30.42, 27.27, 23.87, 14.58 ppm. FT-IR (ATR): v (cm⁻¹) = 3044, 2922, 2853, 2755, 2645, 1592, 1584, 1498, 1470, 1454, 1417, 1407, 1395, 1319, 1297, 1280, 1250, 1192, 1176, 1138, 1106, 1080, 1047, 1028, 1002, 963, 943, 924, 865, 838, 816, 796, 757, 734, 720, 698.

[(E)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/Br-PHG]_{3:1} (Br-PHG···(Ap-9)₃)

¹H-NMR (600 MHz, MeOD): $\delta = 8.74 - 8.65$ (m, 6H), 7.97 (dd, J = 9.5, 2.3 Hz, 6H), 7.77 (dd, J = 4.7, 1.5 Hz, 6H), 7.09 (d, J = 9.0 Hz, 6H), 5.96 (s, J = 17.6 Hz, 2H), 4.09 (t, J = 6.4 Hz, 6H), 1.87 - 1.75 (m, 6H), 1.56 - 1.45 (m, 6H), 1.42 - 1.28 (m, 30H), 0.94 - 0.86 (m, 9H) ppm. ¹³C-NMR (151MHz, MeOD): $\delta = 8.74 - 8.65$ (m, 6H), 7.97 (dd, J = 9.5, 2.3 Hz, 6H), 7.77 (dd, J = 4.7, 1.5 Hz, 6H), 7.09 (d, J = 9.0 Hz, 6H), 5.96 (s, J = 17.6 Hz, 2H), 4.09 (t, J = 6.4 Hz, 6H), 1.87 - 1.75 (m, 6H), 1.56 - 1.45 (m, 6H), 1.42 - 1.28 (m, 30H), 0.94 - 0.86 (m, 9H) ppm. FT-IR (ATR): v (cm⁻¹) = 3044, 2920, 2853, 2755, 2644, 1591, 1584, 1498, 1473, 1453, 1417, 1406, 1319, 1296, 1281, 1253, 1193, 1176, 1137, 1108, 1048, 1004, 963, 943, 924, 863, 839, 816, 797, 747, 736, 720.

[(E)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/Br-PHG]_{3:1} (Br-PHG···(Ap-10)₃)

¹H-NMR (600 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.7, 1.6 Hz, 6H), 8.00 – 7.91 (m, 6H), 7.77 (dd, J = 4.6, 1.6 Hz, 6H), 7.12 – 7.02 (m, 6H), 6.03 – 5.87 (m, 2H), 4.09 (t, J = 6.4 Hz, 6H), 1.85 – 1.76 (m, 6H), 1.55 – 1.45 (m, 6H), 1.43 – 1.26 (m, 36H), 0.90 (t, J = 7.0 Hz, 9H) ppm. ¹³C-NMR (151 MHz, MeOD): $\delta = 164.95$, 159.59, 159.05, 156.81, 151.91, 148.21, 126.97, 117.88, 116.25, 96.26, 89.74, 69.79, 33.22, 30.86, 30.83, 30.63, 30.60, 30.41, 27.25, 23.88, 14.59 ppm. FT-IR (ATR): v (cm⁻¹) = 3043, 2920, 2851, 2647, 1592, 1583, 1498, 1470, 1453, 1417, 1407, 1333, 1319, 1297, 1279, 1252, 1191, 1161, 1138, 1106, 1079, 1054, 1050, 1016, 1003, 943, 924, 864, 839, 797, 734, 719, 696.

6.9 Series of CN-PHG assemblies

[(E)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/CN-PHG]_{3:1} (CN-PHG···(Ap-6)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.73 - 8.64$ (m, 6H), 8.02 - 7.89 (m, 6H), 7.80 - 7.72 (m, 6H), 7.12 - 7.01 (m, 6H), 5.86 (d, J = 1.4 Hz, 2H), 4.07 (t, J = 6.4 Hz, 6H), 1.87 - 1.74 (m, 6H), 1.48 (dd, J = 13.7, 6.3 Hz, 6H), 1.43 - 1.31 (m, 12H), 0.92 (t, J = 6.2 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.92$, 163.96, 159.56, 151.89, 148.20, 126.95, 117.86, 116.23, 95.30, 69.80, 32.87, 30.38, 26.93, 23.80, 14.50 ppm. FT-IR (ATR): v (cm⁻¹) = 3026, 2937, 2868, 2636, 2211, 1626, 1594, 1582, 1498, 1471, 1453, 1417, 1407, 1349, 1355, 1320, 1297, 1254, 1209, 1196, 1171, 1138, 1107, 1074, 1050, 10251004, 967, 943, 924, 897, 865, 839, 819, 797, 735, 725, 675, 660.

[(*E*)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/*CN*-PHG]_{3:1} (*CN*-PHG···(Ap-8)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 88.70$ (dd, J = 4.7, 1.6 Hz, 6H), 8.04 – 7.87 (m, 6H), 7.76 (dd, J = 4.7, 1.6 Hz, 6H), 7.15 – 7.00 (m, 6H), 5.86 (s, 2H), 4.07 (t, J = 6.4 Hz, 6H), 1.88 – 1.72 (m, 6H), 1.50 (dd, J = 14.0, 7.3 Hz, 6H), 1.41 – 1.19 (m, 24H), 0.90 (t, J = 6.7 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.92$, 163.96, 159.57, 151.89, 148.21, 126.96, 117.86, 116.24, 95.30, 69.80, 33.13, 30.61, 30.53, 30.41, 27.26, 23.85, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3035, 2923, 2854, 2638, 2209, 1627, 1594, 1583, 1499, 1470, 1455, 1418, 1407, 1321, 1297, 1253, 1196, 1172, 1139, 1106, 1075, 1044, 1026, 1005, 964, 942, 924, 864, 837, 815, 797, 759, 736, 721, 662.

[(E)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/CN-PHG]_{3:1} (CN-PHG···(Ap-9)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (d, J = 6.1 Hz, 6H), 7.96 (d, J = 9.0 Hz, 6H), 7.76 (dd, J = 4.8, 1.4 Hz, 6H), 7.08 (d, J = 9.0 Hz, 6H), 5.86 (s, 2H), 4.08 (t, J = 6.4 Hz, 6H), 1.90 – 1.70 (m, 6H), 1.60 – 1.44 (m, 6H), 1.43 – 1.15 (m, 30H), 0.89 (d, J = 6.9 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.93$, 163.96, 159.57, 151.89, 148.21, 126.96, 117.86, 116.25, 95.29, 69.80, 33.18, 30.81, 30.64, 30.53, 30.41, 27.24, 23.86, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3045, 2922, 2853, 2637, 2209, 1627, 1594, 1582, 1498, 1470, 1453, 1418, 1406, 1354, 1320, 1297, 1256, 1246, 1208, 1195, 1171, 1137, 1106, 1074, 1049, 1036, 1005, 943, 924, 859, 839, 797, 758, 749, 735, 719, 675, 661.

[(E)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/CN-PHG]_{3:1} (CN-PHG···(Ap-10)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (d, J = 6.1 Hz, 6H), 7.97 (d, J = 9.0 Hz, 6H), 7.77 (dd, J = 4.8, 1.4 Hz, 6H), 7.09 (d, J = 9.0 Hz, 6H), 5.86 (s, 2H), 4.09 (t, J = 6.4 Hz, 6H), 1.90 – 1.73 (m, 6H), 1.58 – 1.45 (m, 6H), 1.43 – 1.20 (m, 36H), 0.90 (t, J = 6.4 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.94, 163.96, 159.60, 151.91, 148.23, 126.96, 117.87, 116.26, 95.29, 69.80, 33.20, 30.85, 30.82, 30.62, 30.59, 30.41, 27.24, 23.87, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3044, 2919, 2850, 2636, 2209, 1627, 1594, 1582, 1498, 1470, 1453, 1418, 1406, 1372, 1320, 1298, 1277, 1255, 1195, 1171, 1137, 1106, 1075, 1050, 1026, 1018, 1005, 943, 924, 857, 839, 798, 735, 720, 675, 662.$

6.10 Series of NO₂-PHG assemblies

[(E)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/NO₂-PHG]_{1:1} (NO₂-PHG···(Ap-6)₁)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.6, 1.6 Hz, 2H), 8.05 – 7.88 (m, 2H), 7.77 (dd, J = 4.6, 1.6 Hz, 2H), 7.15 – 6.99 (m, 2H), 5.97 (s, 2H), 4.09 (t, J = 6.4 Hz, 2H), 1.81 (dq, J = 12.7, 6.5 Hz, 2H), 1.59 – 1.44 (m, 2H), 1.43 – 1.31 (m, 4H), 0.93 (t, J = 7.0 Hz, 3H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 171.60$, 168.82, 164.94, 159.89, 159.61, 151.88, 148.22, 126.95, 117.87, 116.24, 97.47, 69.81, 32.88, 30.38, 26.93, 23.81, 14.50 ppm. FT-IR (ATR): v (cm⁻¹) = 3111, 2935, 2869, 2855, 2727, 2457, 1633, 1581, 1547, 1497, 1469, 1449, 1415, 1406, 1391, 1295, 1258, 1181, 1154, 1138, 1124, 1078, 1048, 1020, 1005, 998, 969, 942, 923, 837, 796, 772, 728, 707, 697, 657, 640.

[(E)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/NO₂-PHG]_{3:1} (NO₂-PHG···(Ap-6)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.7, 1.6 Hz, 6H), 8.02 - 7.93 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.17 - 7.01 (m, 6H), 5.98 (s, 2H), 4.10 (t, J = 6.4 Hz, 6H), 1.91 - 1.74 (m,

6H), 1.61 – 1.46 (m, 6H), 1.45 – 1.29 (m, 12H), 0.94 (t, J = 7.1 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 168.71$, 164.97, 159.90, 159.62, 151.81, 148.23, 126.96, 119.93, 117.89, 116.24, 97.45, 69.81, 32.88, 30.38, 26.94, 23.81, 14.49 ppm. FT-IR (ATR): v (cm⁻¹) = 3108, 3032, 2936, 2868, 2659, 2586, 2325, 2115, 1990, 1885, 1804, 1713, 1634, 1597, 1583, 1568, 1548, 1500, 1470, 1451, 1417, 1406, 1391, 1321, 1296, 1256, 1223, 1208, 1183, 1156, 1139, 1126, 1108, 1050, 1023, 1007, 998, 989, 969, 943, 924, 899, 838, 815, 796, 772, 737, 729, 709, 700, 659.

[(E)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/NO₂-PHG]_{1:1} (NO₂-PHG···(Ap-8)₁)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.7, 1.6 Hz, 2H), 8.03 – 7.88 (m, 2H), 7.77 (dd, J = 4.7, 1.6 Hz, 2H), 7.16 – 6.99 (m, 2H), 5.98 (s, 2H), 4.09 (t, J = 6.4 Hz, 2H), 1.82 (dq, J = 12.8, 6.5 Hz, 2H), 1.59 – 1.44 (m, 2H), 1.42 – 1.26 (m, 8H), 0.91 (t, J = 6.8 Hz, 3H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.94$, 159.89, 159.61, 151.88, 148.22, 126.95, 117.86, 116.25, 97.48, 69.80, 33.12, 30.81, 30.60, 30.53, 30.41, 27.26, 23.85, 14.56 ppm. FT-IR (ATR): v (cm⁻¹) = 3107, 3085, 3069, 2939, 2918, 2866, 2848, 2707, 2563, 2476, 1632, 1595, 1581, 1545, 1497, 1467, 1441, 1416, 1407, 1386, 1297, 1248, 1204, 1157, 1141, 1123, 1107, 1042, 1017, 998, 940, 924, 861, 833, 812, 796, 772, 756, 706, 657, 640.

[(E)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/NO₂-PHG]_{3:1} (NO₂-PHG···(Ap-8)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.73$ (dd, J = 4.7, 1.6 Hz, 6H), 8.04 – 7.94 (m, 6H), 7.79 (dd, J = 4.6, 1.6 Hz, 6H), 7.18 – 7.05 (m, 6H), 5.99 (s, 2H), 4.12 (t, J = 6.4 Hz, 6H), 1.84 (dq, J = 12.8, 6.6 Hz, 6H), 1.62 – 1.46 (m, 6H), 1.46 – 1.23 (m, 24H), 1.01 – 0.85 (m, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 168.75$, 164.96, 159.89, 159.66, 151.83, 148.23, 126.95, 119.94, 117.88, 116.24, 97.45, 69.81, 33.12, 30.60, 30.53, 30.41, 27.25, 23.85, 14.55 ppm. FT-IR (ATR): v (cm⁻¹) = 3109, 3041, 2918, 2852, 2647, 2581, 2331, 2114, 2085, 1990, 1872, 1805, 16341598, 1583, 1546, 1500, 1469, 1456, 1417, 1408, 1387, 1317, 1297, 1252, 1224, 1205, 1160, 1141, 1124, 1107, 1079, 1044, 1021, 1008, 999, 988, 938, 924, 861, 845, 832, 814, 795, 773, 759, 736, 713, 658.

[(E)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/NO₂-PHG]_{1:1} (NO₂-PHG···(Ap-9)₁)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.7, 1.6 Hz, 2H), 8.04 – 7.91 (m, 2H), 7.78 (dd, J = 4.7, 1.6 Hz, 2H), 7.16 – 6.99 (m, 2H), 5.98 (s, 2H), 4.10 (t, J = 6.4 Hz, 2H), 1.82 (dq, J = 12.9, 6.5 Hz, 2H), 1.58 – 1.45 (m, 2H), 1.41 – 1.23 (m, 10H), 0.90 (t, J = 6.8 Hz, 3H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 171.67$, 168.85, 164.95, 159.89, 159.62, 151.89, 148.23, 126.96,

117.87, 116.26, 97.48, 69.81, 33.18, 30.81, 30.64, 30.53, 30.41, 27.25, 23.87, 14.56 ppm. FT-IR (ATR): v (cm⁻¹) = 3175, 3124, 3105, 3081, 2954, 2870, 2851, 2717, 2582, 2479, 2463, 1629, 1595, 1581, 1544, 1495, 1468, 1455, 1408, 1385, 1296, 1243, 1204, 1190, 1152, 1139, 1125, 1106, 1050, 1037, 1008, 937, 922, 859, 834, 794, 771, 735, 708, 639.

[(E)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/NO₂-PHG]_{3:1} (NO₂-PHG···(Ap-9)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.77 - 8.65$ (m, 6H), 8.04 - 7.92 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.16 - 7.04 (m, 6H), 5.97 (s, 2H), 4.10 (t, J = 6.4 Hz, 6H), 1.83 (dq, J = 13.1, 6.5 Hz, 6H), 1.60 - 1.46 (m, 6H), 1.35 (dd, J = 16.2, 6.0 Hz, 30H), 0.91 (dd, J = 7.9, 5.7 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 168.77$, 164.94, 159.89, 159.62, 151.84, 148.21, 126.95, 119.92, 117.88, 116.24, 97.46, 69.80, 33.18, 30.81, 30.63, 30.53, 30.41, 27.24, 23.86, 14.56 ppm. FT-IR (ATR): v (cm⁻¹) = 3101, 3038, 2954, 2939, 2919, 2868, 2851, 2647, 2581, 2486, 2385, 2325, 2114, 2088, 1990, 1873, 1807, 1731, 1634, 1598, 1582, 1547, 1499, 1469, 1456, 1417, 1408, 1389, 1316, 1297, 1256, 1225, 1186, 1162, 1140, 1125, 1107, 1037, 1008, 988, 938, 938, 897, 862, 835, 814, 795, 774, 758, 737, 717, 658.

[(E)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/NO₂-PHG]_{1:1} (NO₂-PHG···(Ap-10)₁)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.7, 1.5 Hz, 2H), 8.03 – 7.91 (m, 2H), 7.77 (dd, J = 4.7, 1.6 Hz, 2H), 7.15 – 7.02 (m, 2H), 5.98 (s, 2H), 4.09 (t, J = 6.4 Hz, 2H), 1.82 (dq, J = 13.0, 6.5 Hz, 2H), 1.56 – 1.44 (m, 2H), 1.41 – 1.25 (m, 12H), 0.90 (t, J = 6.7 Hz, 3H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 169.68, 168.85, 164.95, 159.89, 159.62, 151.89, 148.23, 126.96, 117.87, 116.26, 97.48, 69.80, 33.20, 30.85, 30.81, 30.62, 30.59, 30.40, 27.24, 24.36, 23.87, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3105, 3079, 2950, 2920, 2873, 2851, 2717, 2576, 2524, 2477, 1633, 1594, 1581, 1495, 1468, 1440, 1417, 1408, 1377, 1295, 1245, 1218, 1206, 1157, 1139, 1124, 1107, 1049, 1017, 1003, 966, 936, 864, 834, 806, 797, 772, 737, 708, 696, 657, 640.$

[(E)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/NO₂-PHG]_{3:1} (NO₂-PHG···(Ap-10)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.71$ (dd, J = 4.6, 1.6 Hz, 6H), 8.08 – 7.89 (m, 6H), 7.78 (dd, J = 4.6, 1.6 Hz, 6H), 7.16 – 7.02 (m, 6H), 5.97 (s, 2H), 4.11 (t, J = 6.4 Hz, 6H), 1.83 (td, J = 13.0, 6.6 Hz, 6H), 1.60 – 1.45 (m, 6H), 1.47 – 1.16 (m, 36H), 0.97 – 0.82 (m, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 168.76$, 164.95, 159.89, 159.64, 151.83, 148.22, 126.95, 119.93, 117.88, 116.24, 97.45, 69.80, 33.20, 30.84, 30.81, 30.61, 30.58, 30.40, 27.23, 23.86, 14.56 ppm. FT-IR (ATR): v (cm⁻¹) = 3033, 2917, 2873, 2849, 2647, 2579, 2385, 2324, 2114, 1990, 1905,

1789, 1634, 1603, 1583, 1556, 1498, 1469, 1456, 1417, 1406, 1388, 1318, 1298, 1254, 1225, 1214, 1188, 1177, 1140, 1118, 1088, 1108, 1050, 1016, 989, 940, 923, 837, 796, 776, 754, 737, 724, 697, 658.

6.11 Series of *NO*_H-PHG-assemblies

[(*E*)-4-((4-(Hexyloxy)phenyl)diazenyl)pyridine/*NO_H*-PHG]_{3:1} (*NO_H*-PHG···(Ap-6)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.6, 1.6 Hz, 6H), 8.44 (d, J = 3.1 Hz, 1H), 8.01 – 7.90 (m, 6H), 7.76 (dd, J = 4.6, 1.6 Hz, 6H), 7.12 – 7.02 (m, 6H), 5.92 (d, J = 45.4 Hz, 2H), 4.07 (t, J = 6.5 Hz, 6H), 1.87 – 1.73 (m, 6H), 1.48 (tt, J = 13.1, 6.5 Hz, 6H), 1.43 – 1.26 (m, 12H), 0.93 (t, J = 7.0 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.92$, 161.93, 160.23, 159.56, 151.88, 148.79, 148.20, 126.95, 117.86, 116.23, 99.74, 95.52, 69.80, 32.87, 30.38, 26.93, 23.80, 14.50 ppm. FT-IR (ATR): v (cm⁻¹) = 3046, 2942, 2923, 2854, 2729, 2654, 2482, 2324, 2113, 2090, 1989, 1887, 1769, 1633, 1593, 1537, 1499, 1470, 1451, 1418, 1407, 1333, 1320, 1299, 1284, 1256, 1208, 1192, 1177, 1155, 1140, 1109, 1078, 1051, 1021, 1004, 981, 925, 899, 863, 838, 822, 797, 755, 737, 727.

[(E)-4-((4-(Octyloxy)phenyl)diazenyl)pyridine/Ox -PHG]_{3:1} (NO_H-PHG···(Ap-8)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.6, 1.6 Hz, 6H), 8.44 (d, J = 3.0 Hz, 1H), 8.02 – 7.91 (m, 6H), 7.77 (dd, J = 4.6, 1.6 Hz, 6H), 7.13 – 7.03 (m, 6H), 5.92 (d, J = 45.3 Hz, 2H), 4.09 (t, J = 6.4 Hz, 6H), 1.88 – 1.74 (m, 6H), 1.58 – 1.43 (m, 6H), 1.43 – 1.20 (m, 24H), 0.98 – 0.82 (m, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.94$, 161.93, 160.24, 159.59, 151.90, 148.79, 148.22, 126.95, 117.86, 116.25, 99.74, 95.51, 69.81, 33.12, 30.60, 30.53, 30.41, 27.26, 23.85, 14.56 ppm. FT-IR (ATR): v (cm⁻¹) = 3045, 2942, 2923, 2854, 2728, 2656, 2324, 2112, 1996, 1913, 1633, 1593, 1581, 1537, 1499, 1470, 1451, 1418, 1407, 1334, 1321, 1298, 1284, 1256, 1208, 1192, 1155, 1140, 1109, 1078, 1051, 1021, 1004, 981, 925, 899, 862, 838, 821, 797, 737, 727.

[(E)-4-((4-(Nonyloxy)phenyl)diazenyl)pyridine/Ox -PHG]_{3:1} (NO_H-PHG···(Ap-9)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.6, 1.6 Hz, 6H), 8.44 (d, J = 3.0 Hz, 1H), 8.02 – 7.92 (m, 6H), 7.77 (dd, J = 4.6, 1.6 Hz, 6H), 7.14 – 7.03 (m, 6H), 5.91 (d, J = 45.3 Hz, 2H), 4.09 (t, J = 6.4 Hz, 6H), 1.81 (dq, J = 12.8, 6.5 Hz, 6H), 1.57 – 1.44 (m, 6H), 1.44 – 1.18 (m, 30H), 0.90 (t, J = 6.8 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.94$, 161.93, 160.24, 159.60, 151.90, 148.79, 148.23, 126.96, 117.86, 116.25, 99.78, 95.51, 69.81, 33.18, 30.81, 30.63, 30.60, 30.53, 30.41, 27.25, 23.86, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3044, 2922,

2853, 2718, 2655, 2323, 2112, 1900, 1730, 1633, 1594, 1582, 1537, 1498, 1467, 1452, 1417, 1408, 1335, 1320, 1296, 0285, 1254, 1209, 1192, 1176, 1138, 1107, 1078, 1050:1005, 981, 924, 863, 838, 822, 797, 737, 721.

[(E)-4-((4-(Decyloxy)phenyl)diazenyl)pyridine/Ox -PHG]_{3:1} (NO_H-PHG···(Ap-10)₃)

¹H-NMR (300 MHz, MeOD): $\delta = 8.70$ (dd, J = 4.7, 1.6 Hz, 6H), 8.44 (d, J = 2.9 Hz, 1H), 8.05 – 7.87 (m, 6H), 7.77 (dd, J = 4.7, 1.6 Hz, 6H), 7.16 – 7.01 (m, 6H), 5.91 (d, J = 45.2 Hz, 2H), 4.09 (t, J = 6.4 Hz, 6H), 1.90 – 1.69 (m, 6H), 1.52 (dd, J = 19.1, 12.2 Hz, 6H), 1.43 – 1.14 (m, 36H), 0.90 (t, J = 6.7 Hz, 9H) ppm. ¹³C-NMR (75 MHz, MeOD): $\delta = 164.94$, 161.91, 160.24, 159.60, 151.91, 148.79, 148.23, 126.96, 117.86, 116.26, 99.73, 95.51, 69.80, 33.20, 30.85, 30.82, 30.62, 30.59, 30.41, 27.24, 23.87, 14.57 ppm. FT-IR (ATR): v (cm⁻¹) = 3416, 3040, 2920, 2851, 2754, 2651, 2393, 2113, 1633, 1594, 1582, 1537, 1498, 1468, 1453, 1417, 1407, 1390, 1337, 1320, 1298, 1287, 1254, 1207, 1193, 1176, 1156, 1138, 1107, 1078, 1050, 1016, 1005, 981, 924, 840, 821, 796, 737, 723.

6.12 IR Spectra

Supporting Figure S5. IR spectra of *1C*-PHG···(Ap-n)₃ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of *1C*-PHG is displayed in red.

Supporting Figure S6. IR spectra of **2C-PHG**...(**Ap**-*n*)₃ assemblies with n = 6 (A), **8** (B), **9** (C) and **10** (D) are diagramed in black. IR spectrum of **2C-PHG** is displayed in red.

Supporting Figure S7. IR spectra of 10C-PHG···(Ap-n)₃ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of 10C-PHG is displayed in red.

Supporting Figure S8. IR spectra of *1CO*-PHG···(Ap-n)₂ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of *1CO*-PHG is displayed in red.

Supporting Figure S9. IR spectra of *1CO*-PHG···(Ap-n)₃ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of *1CO*-PHG is displayed in red.

Supporting Figure S10. IR spectra of **2***CO***-PHG** \cdots (**Ap***-n*)₂ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of **2***CO***-PHG** is displayed in red.

Supporting Figure S11. IR spectra of *2CO*-PHG···(Ap-n)₃ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of *2CO*-PHG is displayed in red.

Supporting Figure S12. IR spectra of *10CO*-PHG···(Ap-n)₂ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of *10CO*-PHG is displayed in red.

Supporting Figure S13. IR spectra of *10CO*-PHG···(Ap-n)₃ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of *10CO*-PHG is displayed in red.

Supporting Figure S14. IR spectra of F-PHG···(Ap-n)₃ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of F-PHG is displayed in red.

Supporting Figure S15. IR spectra of *Cl*-PHG···(Ap-n)₃ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of *Cl*-PHG is displayed in red.

Supporting Figure S16. IR spectra of *Br*-PHG···(Ap-n)₃ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of *Br*-PHG is displayed in red.

Supporting Figure S17. IR spectra of *CN*-PHG···(Ap-n)₃ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of *CN*-PHG is displayed in red.

Supporting Figure S18. IR spectra of NO_2 -PHG···(Ap-n)₁ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of NO_2 -PHG is displayed in red.

Supporting Figure S19. IR spectra of NO_2 -PHG···(Ap-n)₃ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of NO_2 -PHG is displayed in red.

Supporting Figure S20. IR spectra of NO_{H} -PHG···(Ap-n)₃ assemblies with n = 6 (A), 8 (B), 9 (C) and 10 (D) are diagramed in black. IR spectrum of NO_{H} -PHG is displayed in red.

6.13 POM Images

Supporting Figure S21. POM images taken upon cooling of the *1C*-PHG···(Ap-n)₃ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

Supporting Figure S22. POM images taken upon cooling of the *2C*-PHG···(Ap-n)₃ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

Supporting Figure S23. POM images taken upon cooling of the 10C-PHG···(Ap-n)₃ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

Supporting Figure S24. POM images taken upon cooling of the *1CO*-PHG···(Ap-n)₂ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

Supporting Figure S25. POM images taken upon cooling of the *1CO*-PHG···(Ap-*n*)₃ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

Supporting Figure S26. POM images taken upon cooling of the *2CO*-PHG···(Ap-n)₂ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

Supporting Figure S27. POM images taken upon cooling of the *2CO*-PHG···(Ap-n)₃ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

Supporting Figure S28. POM images taken upon cooling of the *10CO*-PHG···(Ap-n)₂ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

Supporting Figure S29. POM images taken upon cooling of the *10CO*-PHG···(Ap-*n*)₃ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

Supporting Figure S30. POM images taken upon cooling of the *F*-PHG···(Ap-*n*)₃ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

Supporting Figure S31. POM images taken upon cooling of the *Cl*-PHG···(Ap-n)₃ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

Supporting Figure S32. POM images taken upon cooling of the *Br*-PHG···(Ap-*n*)₃ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

Supporting Figure S33. POM images taken upon cooling of the *CN*-PHG···(Ap-n)₃ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

Supporting Figure S34. POM images taken upon cooling of the NO_2 -PHG···(Ap-n)₁ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

Supporting Figure S35. POM images taken upon cooling of the NO_2 -PHG···(Ap-n)₃ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A) and crystalline (B) under crossed polarizers.

Supporting Figure S36. POM images taken upon cooling of the NO_H -PHG ···(Ap-n)₃ assemblies with n = 6 (1), 8 (2), 9 (3) and 10 (4) in their isotropic (A), liquid crystalline (B) and crystalline phase (C) under crossed polarizers.

6.14 DSC-Thermograms and Tables

Supporting Figure S37. DSC profiles of *1C*-PHG···(Ap-n)₃ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting Table 1. Thermal properties of the hydrogen-bonded liquid crystals of *1C*-**PHG** \cdots (**Ap**-*n*)₃ with n =6, 8, 9, and 10 as obtained by DSC.

		Thermal Properties											
Compound		Т	ΔH		Т	ΔH		Т	ΔH				
		[°C]	[J·g ⁻¹]		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$				
1C-PHG(Ap-6) ₃	Cr → I	102.8	66.06	I → N	89.93	-2.77	N → Cr1	82.22	-17.61				
	$Cr1 \rightarrow Cr2$	80.73	-34.08	-	-	-	-	-	-				
1C-PHG(Ap-8)3	$Cr \rightarrow Cr2$	93.04	24.94	Cr2 → I	99.39	42.34	$I \rightarrow N$	89.88	-4.39				
	$N \rightarrow Cr2$	65.93	-32.82	$Cr2 \rightarrow Cr$	61.94	-24.45	-	-	-				
1C-PHG(Ap-9)3	$Cr \rightarrow Cr2$	37.81	1.76	$Cr2 \rightarrow Cr3$	59.80	-0.19	Cr3 → I	91.00	60.05				
	$I \rightarrow N$	87.05	-3.75	$N \rightarrow Cr3$	62.16	-45.69	-	-	-				
1C-PHG(Ap-10)3	$Cr \rightarrow I$	94.26	75.03	$I \rightarrow N$	90.23	-6.96	$N \rightarrow Cr$	64.26	-55.70				

Supporting Figure S38. DSC profiles of *2C*-PHG···(Ap-n)₃ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting Table 2. Thermal properties of the hydrogen-bonded liquid crystals of 2C-PHG···(Ap-n)₃ with n =6, 8, 9, and 10 as obtained by DSC.

		Thermal Properties											
Compound		Т	ΔH		Т	ΔH		Т	ΔH				
		[°C]	$[J \cdot g^{-1}]$		[°C]	[J·g ⁻¹]		[°C]	$[J \cdot g^{-1}]$				
2C-PHG(Ap-6) ₃	$Cr \rightarrow I$	100.8	45.19	$I \rightarrow Cr$	77.61	-17.47	$Cr \rightarrow Cr2$	74.13	-17.47				
	$Cr2 \rightarrow Cr3$	71.92	-8.33	-	-	-	-	-	-				
2C-PHG(Ap-8)3	$Cr \rightarrow Cr2$	59.81	1.75	$Cr2 \rightarrow I$	91.17	45.55	$I \rightarrow N$	74.21	-6.84				
	$N \rightarrow Cr$	49.07	-29.88	-	-	-	-	-	-				
2C-PHG(Ap-9) ₃	$Cr \rightarrow Cr2$	54.78	4.59	$Cr2 \rightarrow I$	81.83	39.32	$I \rightarrow N$	69.90	-2.60				
	$N \rightarrow Cr$	42.28	-27.26	-	-	-	-	-	-				
2C-PHG(Ap-10)3	$Cr \rightarrow Cr2$	62.63	43.87	$Cr2 \rightarrow Cr3$	73.24	20.39	Cr3 → I	80.79	6.39				
	$I \rightarrow N$	57.20	-2.69	$N \rightarrow Cr$	34.14	-48.25	-	-	-				

Supporting Figure S39. DSC profiles of *10C*-PHG···(Ap-n)₃ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting Table 3. Thermal properties of the hydrogen-bonded liquid crystals of 10C-**PHG**···(**Ap**-*n*)₃ with n =6, 8, 9, and 10 as obtained by DSC.

		Thermal Properties												
Compound		Т	ΔH		Т	ΔH		Т	ΔH					
		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$					
10C-PHG(Ap-6)3	$Cr \rightarrow Cr2$	19.19	-12.06	$Cr2 \rightarrow I$	64.00	48.21	I → N	47.11	-5.10					
	$N \rightarrow Cr$	5.87	-11.47	-	-	-	-	-	-					
10C -PHG(Ap-8) ₃	$Cr \rightarrow Cr2$	60.46	15.32	Cr2 → I	71.66	45.17	$I \rightarrow N$	49.85	-4.38					
	$N \rightarrow Cr$	25.39	-40.22	-	-	-	-	-	-					
10C -PHG(Ap-9) ₃	$Cr \rightarrow Cr2$	53.70	44.08	$Cr2 \rightarrow Cr3$	58.11	6.07	Cr3 → I	74.95	19.03					
	I → Cr3	58.06	-12.80	$Cr3 \rightarrow Cr2$	51.88	-4.15	$Cr2 \rightarrow Cr$	24.90	-25.52					
10C -PHG(Ap-10) ₃	$Cr \rightarrow Cr2$	57.76	33.26	Cr2 → I	60.83	40.05	$I \rightarrow N$	54.22	-5.68					
	$N \rightarrow Cr$	21.61	-45.24	-	-	-	-	-	-					

Supporting Figure S40. DSC profiles of *1CO*-PHG···(Ap-n)₂ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting Table 4. Thermal properties of the hydrogen-bonded liquid crystals of *1CO*-**PHG** \cdots (**Ap**-*n*)₂ with n =6, 8, 9, and 10 as obtained by DSC.

	Thermal Properties											
Compound		Т	ΔH		Т	ΔH		Т	ΔH			
		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$			
1CO-PHG(Ap-6) ₂	Cr →I	127.4	127.3	-	-	-	-	-	-			
1CO-PHG(Ap-8)2	$Cr \rightarrow I$	137.9	155.7	$I \rightarrow Sm$	60.9	-16.77	$\mathrm{Sm} \rightarrow \mathrm{Cr}$	47.13	-43.71			
1CO-PHG(Ap-9) ₂	$\mathrm{Cr} \not \to \mathrm{I}$	136.2	137.3	$I \rightarrow Sm$	67.1	-17.90	$Sm \rightarrow Cr$	49.64	-46.27			
1CO-PHG(Ap-10)2	$Cr \rightarrow I$	133.7	131.3	$I \rightarrow Sm$	58.4	-16.26	$\mathrm{Sm} \rightarrow \mathrm{Cr}$	45.80	-44.59			

Supporting Figure S41. DSC profiles of *1CO*-PHG···(Ap-n)₃ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting Table 5. Thermal properties of the hydrogen-bonded liquid crystals of *1CO*-**PHG** \cdots (**Ap**-*n*)₃ with n =6, 8, 9, and 10 as obtained by DSC.

		Thermal Properties											
Compound		Т	ΔH		Т	ΔH		Т	ΔH				
		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$				
1CO-PHG(Ap-6) ₃	$Cr \rightarrow Cr2$	54.71	25.34	$Cr2 \rightarrow I$	123.9	68.55	$I \rightarrow Cr2$	86.64	-24.73				
	$Cr2 \rightarrow Cr1$	31.69	-29.35	-	-	-	-	-	-				
1CO-PHG(Ap-8)3	$Cr \rightarrow Cr2$	66.19	27.47	Cr2 → I	136.6	90.05	$I \rightarrow Cr2$	93.31	-32.59				
	Cr2 → Cr1	48.46	-43.09	-	-	-	-	-	-				
1CO-PHG(Ap-9)3	$Cr \rightarrow Cr2$	59.72	23.89	Cr2 → I	131.6	81.52	$I \rightarrow Cr2$	100.66	-65.43				
	$Cr2 \rightarrow Cr1$	42.92	-30.72	-	-	-	-	-	-				
1CO-PHG(Ap-10)3	$Cr \rightarrow Cr2$	61.43	18.76	Cr2 → I	131.1	89.88	$I \rightarrow Cr2$	87.18	-41.33				
	Cr2 → Cr1	47.16	-45.62	-	-	-	-	-	-				

Supporting Figure S42. DSC profiles of *2CO*-PHG···(Ap-n)₂ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting Table 6. Thermal properties of the hydrogen-bonded liquid crystals of *2CO*-**PHG** \cdots (**Ap**-*n*)₂ with n =6, 8, 9, and 10 as obtained by DSC.

	Thermal Pronerties											
Compound		т	۸Ц	There	<u>пагттор</u> т			т	۸Ц			
r		1			1			1				
		$[^{\circ}C]$	[J·g ⁻¹]		$[^{\circ}C]$	[J·g ⁻¹]		$[^{\circ}C]$	[J·g ⁻¹]			
2CO-PHG(Ap-6) ₂	$Cr \rightarrow Cr2$	55.8	23.20	$Cr2 \rightarrow Cr3$	97.1	37.72	Cr3 → I	100.6	31.47			
	$Cr3 \rightarrow Sm$	69.9	-4.70	$\mathrm{Sm} \not \to \mathrm{Cr}$	46.1	-35.47	$Cr \rightarrow Cr1$	32.3	-19.97			
2CO-PHG(Ap-8)2	$Cr \rightarrow Cr2$	79.8	6.01	Cr2 → I	103.2	88.18	$I \not \to Sm$	91.6	-7.14			
	$\mathrm{Sm} ightarrow \mathrm{Cr}$	62.2	-66.89	-	-	-	-	-	-			
2CO-PHG(Ap-9)2	$Cr \rightarrow Cr2$	61.7	9.79	Cr2 → I	95.5	83.1	$I \not \to Sm$	93.1	-8.02			
	$\mathrm{Sm} \rightarrow \mathrm{Cr}$	63.5	-58.9	$Cr \rightarrow Cr2$	40.5	-11.58	-	-	-			
2CO-PHG(Ap-10) ₂	$Cr \rightarrow Cr2$	58.6	10.18	$\mathrm{Cr}2 \not \rightarrow \mathrm{I}$	101.9	78.19	$I \not \to Sm$	96.6	-8.03			
	$\mathrm{Sm} \rightarrow \mathrm{Cr}$	61.0	-61.99	$Cr \rightarrow Cr2$	42.4	-13.64	-	-	-			

Supporting Figure S43. DSC profiles of *2CO*-PHG···(Ap-n)₃ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting Table 7. Thermal properties of the hydrogen-bonded liquid crystals of *2CO*-**PHG** \cdots (**Ap**-*n*)₃ with n =6, 8, 9, and 10 as obtained by DSC.

		Thermal Properties											
Compound		Т	ΔH		Т	ΔH		Т	ΔH				
		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$				
2CO-PHG(Ap-6) ₃	$Cr \rightarrow Cr2$	56.03	34.90	$Cr2 \rightarrow I$	96.7	53.56	$I \rightarrow Cr2$	48.75	-30.37				
	$Cr2 \rightarrow Cr1$	36.77	-32.48	-	-	-	-	-	-				
2CO-PHG(Ap-8)3	$Cr \rightarrow Sm$	65.14	37.53	$\mathrm{Sm} \not \to \mathrm{I}$	79.38	4.59	$I \rightarrow Sm$	72.65	-6.97				
	$\mathrm{Sm} \not \to \mathrm{Cr}$	48.95	-37.69	-	-	-	-	-	-				
2CO-PHG(Ap-9) ₃	$Cr \rightarrow Cr2$	59.52	37.15	$Cr2 \rightarrow I$	92.72	42.15	$I \rightarrow Sm$	81.21	-3.83				
	$\mathrm{Sm} \not \to \mathrm{Cr}$	48.22	-69.14	-	-	-	-	-	-				
2CO-PHG(Ap-10)3	$Cr \rightarrow Cr2$	63.89	36.34	$Cr2 \rightarrow I$	95.91	45.50	$I \rightarrow Cr2$	53.24	-27.24				
	Cr2 → Cr1	47.24	-45.26	-	-	-	-	-	-				

Supporting Figure S44. DSC profiles of *10CO*-PHG···(Ap-n)₂ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting Table 8. Thermal properties of the hydrogen-bonded liquid crystals of *10CO*-**PHG** \cdots (**Ap**-*n*)₂ with n =6, 8, 9, and 10 as obtained by DSC.

		Thermal Properties											
Compound		Т	ΔH		Т	ΔH		Т	ΔH				
		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$				
10CO-PHG(Ap-6) ₂	$Cr \rightarrow Cr2$	58.3	3.15	$Cr2 \rightarrow I$	77.6	37.38	I → Sm	54.5	-2.58				
	$\operatorname{Sm} \rightarrow \operatorname{Cr}$	45.3	-36.83	-	-	-	-	-	-				
10CO-PHG(Ap-8)2	$Cr \rightarrow Cr2$	56.8	6.02	Cr2 → I	75.5	65.73	$I \rightarrow Sm$	61.6	-4.89				
	$\mathrm{Sm} \not \to \mathrm{Cr}$	45.9	-40.28	-	-	-	-	-	-				
10CO-PHG(Ap-9) ₂	$Cr \rightarrow Cr2$	54.1	13.17	$Cr2 \rightarrow Cr3$	62.1	19.64	$Cr3 \rightarrow Cr4$	66.4	24.8				
	Cr4 → I	72.4	9.79	$I \rightarrow Sm$	65.4	-8.91	-	-	-				
10CO-PHG(Ap-10) ₂	$Cr \rightarrow I$	70-5	85.73	$I \rightarrow Sm$	67.24	-8.60	-	-	-				

Supporting Figure S45. DSC profiles of *10CO*-PHG···(Ap-n)₃ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting	Table 9.	Thermal	properties	of the	hydrogen-	bonded	liquid	crystals	of	<i>10CO</i> -
PHG…(Ap-	$(n)_3$ with n	=6, 8, 9, a	and 10 as o	btained	l by DSC.					

		Thermal Properties											
Compound		Т	ΔH		Т	ΔH		Т	ΔH				
		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$				
10CO-PHG(Ap-6) ₃	$Cr \rightarrow Cr2$	51.53	22.38	Cr2 → I	71.39	37.45	$I \rightarrow Cr2$	43.63	-35.76				
	$Cr2 \rightarrow Cr1$	37.30	-28.18	-	-	-	-	-	-				
10CO-PHG(Ap-8)3	$Cr \rightarrow Cr2$	60.54	39.35	$Cr2 \rightarrow I$	73.36	34.40	$I \rightarrow Sm$	57.40	-5.95				
	$\mathrm{Sm} \twoheadrightarrow \mathrm{Cr} 2$	50.20	-4.76	$Cr2 \rightarrow Cr1$	46.77	-61.43	-	-	-				
10CO-PHG(Ap-9) ₃	$Cr \rightarrow Cr2$	54.27	47.09	$Cr2 \rightarrow I$	62.07	22.08	$I \rightarrow Sm$	57.22	-6.11				
	$\mathrm{Sm} \rightarrow \mathrm{Crl}$	28.93	-48.44	-	-	-	-	-	-				
10CO-PHG(Ap-10) ₃	$Cr \rightarrow Cr2$	55.52	42.64	$Cr2 \rightarrow I$	66.08	27.29	$I \rightarrow Sm$	58.71	-6.38				
	$Sm \rightarrow Cr2$	25.56	-40.42	-	-	-	-	-	-				

Supporting Figure S46. DSC profiles of *Cl*-PHG···(Ap-n)₃ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting Table 10. Thermal properties of the hydrogen-bonded liquid crystals of *Cl*-**PHG** \cdots (**Ap**-*n*)₃ with n =6, 8, 9, and 10 as obtained by DSC. a: Several crystalline transitions observed between 25 to 85 °C not listed in the table below.

		Thermal Properties											
Compound		Т	ΔH		Т	ΔH		Т	ΔH				
		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$				
Cl-PHG(Ap-6) ₃ ^a	$Cr \rightarrow I$	105.2	76.97	$I \rightarrow N$	102.3	-7.43	$I \rightarrow N$	100.9	-6.94				
	$N \rightarrow Cr$	79.29	-25.58	$Cr \rightarrow Cr2$	74.25	-10.86	$Cr2 \rightarrow Cr3$	31.58	-12.94				
Cl-PHG(Ap-8)3	$Cr \rightarrow Cr2$	58.81	5.43	$Cr2 \rightarrow I$	100.02	66.08	$I \rightarrow N$	98.73	-7.30				
	$N \rightarrow Cr$	76.98	-44.39	-	-	-	-	-	-				
<i>Cl</i> -PHG(Ap-9) ₃	$Cr \rightarrow Cr2$	57.47	5.55	$Cr2 \rightarrow N$	91.11	52.00	$N \rightarrow I$	100.8	-6.28				
	$I \rightarrow N$	99.90	-7.89	$N \rightarrow Cr$	75.41	-42.22	-	-	-				
<i>Cl</i> -PHG(Ap-10) ₃	$Cr \rightarrow Cr2$	63.47	56.90	$Cr2 \rightarrow I$	98.51	74.82	$I \rightarrow N$	101.7	-9.51				
	$N \rightarrow Cr$	79.85	-54.20	-	-	-	-	-	-				

Supporting Figure S47. DSC profiles of *Br*-PHG···(Ap-*n*)₃ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting Table 11. Thermal properties of the hydrogen-bonded liquid crystals of *Br*-**PHG** \cdots (**Ap**-*n*)₃ with n =6, 8, 9, and 10 as obtained by DSC.

		Thermal Properties											
Compound		Т	ΔH		Т	ΔH		Т	ΔH				
		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$				
Br-PHG(Ap-6) ₃	$Cr \rightarrow I$	98.61	71.86	$I \rightarrow N$	97.88	-5.62	$N \rightarrow Cr$	75.49	-51.07				
Br-PHG(Ap-8)3	$Cr \rightarrow N$	94.35	52.12	$N \rightarrow I$	101.6	9.40	$I \rightarrow N$	101.3	-8.57				
	$N \rightarrow Cr$	77.87	-45.26	-	-	-	-	-	-				
Br-PHG(Ap-9)3	$Cr \rightarrow Sm$	89.76	49.47	$\mathrm{Sm} \not \to \mathrm{I}$	102.6	13.14	$I \rightarrow Sm$	101.9	-10.71				
	$\mathrm{Sm} \rightarrow \mathrm{Cr}$	73.02	-47.52	-	-	-	-	-	-				
<i>Br</i> -PHG(Ap-10) ₃	$Cr \rightarrow Sm$	92.72	50.02	$\mathrm{Sm} \not \to \mathrm{I}$	109.3	12.27	$I \rightarrow Sm$	106.8	-10.02				
	Sm → Cr	75.52	-43.88	-	-	-	-	-	-				

Supporting Figure S48. DSC profiles of *CN*-PHG···(Ap-n)₃ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting Table 12. Thermal properties of the hydrogen-bonded liquid crystals of *CN*-**PHG** \cdots (**Ap**-*n*)₃ with n =6, 8, 9, and 10 as obtained by DSC. a: Complexes showed under DSC conditions slight decomposition. Mesophase was not measured. b: First cycle.

	Thermal Properties											
Compound ^a		Т	ΔH		Т	ΔH		Т	ΔH			
		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$			
<i>CN</i> -PHG(Ap-6) ₃ ^b	$Cr \rightarrow Cr2$	53.51	87.18	$Cr2 \rightarrow Cr3$	87.18	1.81	$Cr \rightarrow I$	98.76	30.25			
	$I \rightarrow Cr3$	115.0	-11.82	-	-	-	-	-	-			
CN-PHG(Ap-8)3 ^b	$Cr \rightarrow Cr2$	63.64	4.83	$Cr2 \rightarrow I$	116.1	69.52	$I \rightarrow Cr2$	74.15	-3.23			
	$Cr2 \rightarrow Cr$	71.59	-37.96	$Cr \rightarrow Cr$	33.92	-10.17	-	-	-			
<i>CN</i> -PHG(Ap-9) ₃	$Cr \rightarrow Cr2$	55.15	3.20	$Cr2 \rightarrow I$	108.2	76.98	$I \rightarrow Cr$	66.62	-48.18			
	$Cr \rightarrow Cr2$	29.74	-12.67	-	-	-	-	-	-			
CN-PHG(Ap- 10) ₃	$Cr \rightarrow Cr2$	60.15	4.86	$Cr2 \rightarrow I$	106.5	79.27	$I \rightarrow Cr$	75.42	-56.41			
	$Cr \rightarrow Cr2$	33.58	-18.93	-	-	-	-	-	-			

Supporting Figure S49. DSC profiles of NO_2 -PHG···(Ap-n)₁ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting	Table 13.	Thermal	properties	of the	hydrogen-bonde	d liquid	crystals	of N	\mathcal{I}_2 -
PHG…(Ap-	$(n)_1$ with n =	=6, 8, 9, ar	nd 10 as ob	tained l	by DSC.				

	Thermal Properties											
Compound		Т	ΔH		Т	ΔH		Т	ΔH			
		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$			
<i>NO</i> ₂ -PHG(Ap-6) ₁	$Cr \rightarrow I$	131.2	112.81	$I \rightarrow Cr$	78.6	-91.85	-	-	-			
NO_2 -PHG(Ap-8) ₁	$\mathrm{Cr} \not \to \mathrm{I}$	125.9	122.27	$I \rightarrow Cr$	82.0	-43.37	$Cr \rightarrow Cr2$	80.6	-62.31			
<i>NO</i> ₂ -PHG(Ap-9) ₁	$\mathrm{Cr} \not \to \mathrm{I}$	112.9	114.56	$I \rightarrow Cr$	87.2	-104.36	-	-	-			
NO_2 -PHG(Ap-10) ₁	$Cr \rightarrow I$	109.4	121.17	$I \rightarrow Cr$	90.66	-100.78	-	-	-			

Supporting Figure S50. DSC profiles of NO_2 -PHG···(Ap-n)₃ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting	Table 14.	Thermal	properties	of the	hydrogen-bo	onded	liquid	crystals	of	NO_2 -
PHG…(Ap-	$(n)_3$ with n =	=6, 8, 9, ai	nd 10 as ob	tained l	by DSC.					

	Thermal Properties											
Compound		Т	ΔH		Т	ΔH		Т	ΔH			
		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$			
<i>NO</i> ₂ -PHG(Ap-6) ₃	$Cr \rightarrow Cr2$	56.04	54.65	Cr2 → I	114.08	25.13	$I \rightarrow Cr2$	63.76	-11.26			
	$Cr2 \rightarrow Cr1$	57.77	-21.40	$Cr1 \rightarrow Cr$	39.66	50.57	-	-	-			
<i>NO</i> ₂ -PHG(Ap-8) ₃	$Cr \rightarrow Cr2$	65.14	61.49	$Cr2 \rightarrow I$	109.7	31.49	$I \rightarrow Cr2$	51.62	-107.9			
<i>NO</i> ₂ -PHG(Ap-9) ₃	$Cr \rightarrow Cr2$	60.58	52.79	$Cr2 \rightarrow I$	82.00	46.69	$I \rightarrow Cr2$	52.32	-41.48			
	$Cr2 \rightarrow Cr1$	47.81	-61.11	-	-	-	-	-	-			
<i>NO</i> ₂ -PHG(Ap-10) ₃	$Cr \rightarrow Cr2$	61.49	37.33	$Cr2 \rightarrow I$	88.76	57.28	$I \rightarrow Cr2$	60.97	-47.29			
	Cr2 → Cr1	50.97	-37.80	-	-	-	-	-	-			

Supporting Figure S51. DSC profiles of NO_H -PHG···(Ap-n)₃ with n = 6 (A), 8 (B), 9 (C) and 10 (D) obtained with a heating / cooling rate 10°K/min.

Supporting	Table 15.	Thermal	properties	of the	hydrogen	-bonded	liquid	crystals	of I	NO_{H}
PHG…(Ap-	$(n)_3$ with n =	=6, 8, 9, a	nd 10 as ob	tained	by DSC.					

	Thermal Properties										
Compound		Т	ΔH		Т	ΔH		Т	ΔH		
		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$		[°C]	$[J \cdot g^{-1}]$		
NO_H -PHG(Ap-6) ₃	$Cr \rightarrow Cr2$	51.05	64.11	$Cr2 \rightarrow I$	91.03	5.53	I → Cr	11.11	-50.96		
NO _H -PHG(Ap-8) ₃	$Cr \rightarrow Cr2$	61.27	63.04	$Cr2 \rightarrow I$	85.80	6.72	$I \rightarrow Cr$	32.56	-53.81		
NO _H -PHG(Ap-9) ₃	$Cr \rightarrow Cr2$	57.74	32.04	$Cr2 \rightarrow I$	97.26	26.49	$\mathbf{I} \not \rightarrow \mathbf{N}$	75.54	-3.25		
	$N \rightarrow Cr$	14.88	-28.69	-	-	-	-	-	-		
NO_H -PHG(Ap-10) ₃	$Cr \rightarrow Cr2$	60.88	45.36	$Cr2 \rightarrow I$	93.25	29.52	$\mathbf{I} \not \rightarrow \mathbf{N}$	80.87	-0.92		
	$N \rightarrow Cr$	28.43	-48.46	-	-	-	-	-	-		

6.15 SAXS Data of the HBAs

Supporting Figure S52. 2D X-ray scattering pattern (top) of F-PHG···(Ap-8)₃ in the crystalline (A), nematic (B) and isotropic phase (C) as well as radially averaged scattering patterns (bottom) of F-PHG···(Ap-8)₃ at the above recorded temperatures.

Supporting Figure S53. 2D X-ray scattering pattern (top) of Cl-PHG···(Ap-8)₃ in the crystalline (A), nematic (B) and isotropic phase (C) as well as radially averaged scattering patterns (bottom) of Cl-PHG···(Ap-8)₃ at the above recorded temperatures.

Supporting Figure S54. 2D X-ray scattering pattern (top) of Br-PHG···(Ap-8)₃ in the crystalline (A), nematic (B) and isotropic phase (C) as well as radially averaged scattering patterns (bottom) of Br-PHG···(Ap-8)₃ at the above recorded temperatures.

Supporting Figure S55. 2D X-ray scattering pattern (top) of CN-PHG···(Ap-10)₃ in the crystalline (A), smectic C (B) and isotropic phase (C) as well as radially averaged scattering patterns (bottom) of CN-PHG···(Ap-8)₃ at the above recorded temperatures.

Supporting Figure S56. 2D X-ray scattering pattern (top) of 1C-PHG···(Ap-8)₃ in the crystalline (A), nematic (B) and isotropic phase (C) as well as radially averaged scattering patterns (bottom) of 1C-PHG···(Ap-8)₃ at the above recorded temperatures.

Supporting Figure S57. 2D X-ray scattering pattern (top) of 10C-PHG···(Ap-8)₃ in the crystalline (A), nematic (B) and isotropic phase (C) as well as radially averaged scattering patterns (bottom) of 10C-PHG···(Ap-8)₃ at the above recorded temperatures.

Supporting Figure S58. 2D X-ray scattering pattern (top) of 2CO-PHG···(Ap-8)₃ in the crystalline (A), smectic A (B) and isotropic phase (C) as well as radially averaged scattering patterns (bottom) of 2CO-PHG···(Ap-8)₃ at the above recorded temperatures.

Supporting Figure S59. 2D X-ray scattering pattern (top) of *10CO*-PHG···(Ap-8)₃ in the crystalline (A), smectic A (B) and isotropic phase (C) as well as radially averaged scattering patterns (bottom) of *10CO* -PHG···(Ap-8)₃ at the above recorded temperatures.

Identification code	2CO-PHG…(Ap-3) ₂	<i>NO_H</i> -PHG···(Ap-6) ₃	NO₂-PHG ···(Ap-8) ₁
CCDC	1886743	1886744	1884535
Empirical formula	$C_{36}H_{38}N_6O_6$	$C_{58}H_{70}N_{10}O_7$	$C_{25}H_{30}N_4O_6$
М	650.72	1019.24	482.53
Crystal size [mm]	$0.229 \times 0.134 \times 0.133$	$0.337\times0.188\times0.178$	$0.086\times0.116\times0.181$
<i>T</i> [K]	134(2)	120(2)	100(2)
Crystal system	triclinic	triclinic	Triclinic
Space group	$P^{\overline{1}}$	$P^{\overline{1}}$	$P^{\overline{1}}$
a [Å]	10.5345(5)	13.6197(4)	7.8653(2)
<i>b</i> [Å]	17.8146(8)	14.7142(5)	10.1875(3)
c [Å]	18.0404(8)	16.3128(5)	15.2306(4)
α [°]	97.6867(14)	100.6069(12)	77.871(2)
β[°]	103.3143(14)	108.1099(11)	89.802(2)
γ[°]	93.6974(14)	111.4086(11)	87.620(2)
V [Å ³]	3249.0(3)	2724.36(15)	1192.10(6)
Ζ	4	2	2
$D_{\text{calc}} \left[\mathbf{g} \cdot \mathbf{cm}^{-1} \right]$	1.330	1.242	1.344
$\mu(\mathrm{Cu}K_{\alpha}[\mathrm{mm}^{-1}])$	0.754	0.669	0.802
Transmissions	0.75/0.65	0.75/0.63	0.93/0.86
F(000)	1376	1088	512
Index ranges	$-13 \le h \le 13$	$-17 \le h \le 17$	$-9 \leq h \leq 9$
	$-22 \le k \le 22$	$-18 \le k \le 18$	$-11 \le k \le 12$
	$-22 \le l \le 21$	$-20 \le l \le 20$	$-18 \le l \le 18$
θ_{\max} [°]	79.534	79.263	68.400
Reflections collected	252621	186048	17592
Independent reflections	13947	11717	4377
R _{int}	0.0328	0.0412	0.0636
Refined parameters	895	712	329
$R_1 \left[I \ge 2\sigma(I) \right]$	0.0349	0.0388	0.0498
wR_2 [all data]	0.1078	0.1028	0.1177
x(Flack)			
GooF	1.050	1.041	1.018
$\Delta \rho_{\text{final}} (\text{max/min}) [e \cdot \text{Å}^{-3}]$	0.207/-0.285	0.230/-0.226	0.183/-0.231

6.16 Crystallographic Data of the HBAs

6.17 Literature

- (1) M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson and H. Nakatsuji, *Wallingford CT*, **2016**.
- (2) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132, 154104; P. Stephens, F. Devlin, C. Chabalowski and M. J. Frisch, J. Chem. Phys. 1994, 98, 11623–11627; A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; C. Lee, W. Yang and R. G. Parr, Physical review B, 1988, 37, 785; S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 1980, 58, 1200–1211; H. Schröder, A. Creon and T. Schwabe, J. Chem. Theory Comput. 2015, 11, 3163–3170.
- (3) R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, J. Chem. Phys. 1992, 96, 6796–806; D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 1993, 98, 1358–71.
- (4) C. B. Hubschle and B. Dittrich, J. Appl. Crystallogr. 2011, 44(1), 238–240.
- (5) R. F. W. Bader, M. T. Carroll, J. R. Cheeseman and C. Chang, J. Am. Chem. Soc. 1987, 109(26), 7968–7979; P. Politzer, J. S. Murray and T. Clark, Phys. Chem. Chem. Phys. 2010, 12(28), 7748–7757.
- (6) M. Pfletscher, S. Hölscher, C. Wölper, M. Mezger and M. Giese, *Chem. Mater.* 2017, 29(19), 8462–8471.