Electronic supporting information for paper

Pyrrolidinium containing perovskites of thermal stability and water resistance for photovoltaics

Alex Fan Xu^a, Ryan Taoran Wang^a, Lory Wenjuan Yang^a, Ray LaPierre^b, Nebile Isik Goktas^b and Gu Xu^{a*}

^a Department of Materials Science and Engineering, McMaster University, 1280 Main ST W, Hamilton, ON, Canada L8S 4L8.

^b Department of Engineering Physics, McMaster University, 1280 Main ST W, Hamilton, ON, Canada L8S 4L8

Fig S1. P-XRD of PyPbI3.

Fig S2. H-NMR result of the PyPbI₃ product.

Fig S3. TGA curve of PyPbI₃. the product started weight dropping at 218°C, which indicates the original structure of PyPbI₃ remains stable even beyond 200°C. This is much higher than the phase transformation temperature of MAPbI₃, which is only around 55°C⁹. The weight loss then continues throughout the rest of the curve till 600 °C, where the PyPbI₃ decomposes completely.

Fig S4. Crystal structure of $(C_4H_8NH_2)PbI_3$; lead yellow, iodine purple, carbon black, nitrogen blue and hydrogen grey. Reprinted with permission from ref. 26.

Fig S5. The FTIR spectra of the PyPbI₃ thin film. No sharp bands appear at $\mu < 840 \text{ cm}^{-1}$ or $\mu > 3500 \text{ cm}^{-1}$, which means there is no water exist in the material. This is not surprising, considering that the PyPbI₃ product was annealed at 120°C to form the thin film. All the other bands in the spectra can be assigned unambiguously to the pyrrolidinium cations. Moreover, their broadness is a clear indication of their orientational disorder, which was also confirmed by our single crystal XRD results. Obviously, the vibrations of the Pb-I skeleton are not visible in the explored wavenumber range.