Supplementary information

Graphitic Carbon Nitride Nanosheets for Solution Processed Non-volatile Memories

Ruopeng Wang,^{1,a} Huilin Li,^{1,a} Luhong Zhang,^c Yu-Jia Zeng,^c Ziyu Lv,^a Jia-Qin Yang,^a Jing-Yu Mao,^b Zhanpeng Wang,^b Ye Zhou^{*,b} and Su-Ting Han^{*,a}

- a. Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
- *. E-mail: sutinghan@szu.edu.cn.
- b. Institute for Advanced Study, Shenzhen University, 518060, P. R. China.
- *. E-mail: yezhou@szu.edu.cn
- c. Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
- 1. These authors contributed equally to this work.

Fig. S1. High-resolution XPS spectra of a) C 1s and b) N 1s of the g-C₃N₄ nanosheets sample.

Fig. S2. EDS pattern of the $g-C_3N_4$ nanosheets sample.

-3 nm

Fig. S3. The AFM image of the active layer.

Fig. S4. I-V curve of pristine PMMA based RRAM device.

Fig. S5. a) The I-V curves of a single cell memory device. b) The distribution of the SET/RESET voltage of a single cell device.

Fig. S6. The I-V curves of the g-C₃N₄ based RRAM devices stored different days.

Fig. S7 KPFM images of the pristine PMMA film (a) Before the tip bias (initial state). (b) After a -6V tip bias in contact mode. (c) After a +6V tip bias in contact mode. (The scanning area of contact mode is $5 \mu m * 5 \mu m$)