Supporting Information

Highly efficient and thermally stable single-activator white-emitting

phosphor K₂Ca(PO₄)F:Eu²⁺ for white light-emitting diodes

Ying Li,^{†,a} Zhongxian Qiu^{†,a,b} Jilin Zhang,^{a,*} Xiaoyu Ji,^a Xinguo Zhang,^{c,*} Shuzhen Liao,^d Wenli Zhou,^a Liping Yu,^a and Shixun Lian^a

^a Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China. E-mail: chemzhangjl@hunnu.edu.cn.

^b State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.

^c Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China. E-mail: mpcc1@qq.com.

^d School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.

[†] These two authors contributed equally to this work.

Computational Methodology

The DFT calculations were performed using a generalized gradient approximation (GGA) functional in the Perdew-Burke-Ernzerhof (PBE) scheme, as implemented in the Vienna Ab-initio Simulation Package (VASP). A $2 \times 2 \times 2$ supercell of K₂CaPO₄F (KCPOF), containing 288 atoms, was employed for the calculation of Eu²⁺-substitution defect on one site of Ca²⁺/K⁺ cation. All the two kinds of Ca²⁺ sites and four K⁺ sites were taken into consideration. Moreover, for the supercells with Eu²⁺ at a K⁺ site, the nearest-neighbor (NN) Eu_{K1}-(V_{K4} or Kca), Eu_{K2}-(V_{K3} or Kca), Eu_{K3}-(V_{K2} or Kca), and Eu_{K4}-(V_{K1} or Kca), were modeled for defect charge balance.^[1] The K(3s²3p⁶4s¹), Ca(3s²3p⁶4s²), P(3s²3p³), O(2s²2p⁴), F(2s²2p⁵) and Eu(5s²5p⁶4f⁷6s²) were treated as valence electrons, and their interactions with the respective cores were described by the projected augmented wave (PAW) method. The geometries of the structures were fully optimized until the total energies and the Hellmann-Feynman forces on the atoms were converged to 10⁻⁴ eV and 0.05 eV·Å⁻¹, respectively. 2 × 2 × 1 *k*-point grid was used to sample the Brillouin zone. The cutoff energy for the plane wave basis was set to 400 eV, and the PREC-flag was set to accurate.

The defect formation energy (ΔE_f) in the charge state q was calculated by^[2-4]

$$\Delta E_{\rm f}[{\rm D}^{\rm q}] = E_{\rm tot}[{\rm D}^{\rm q}] - E_{\rm tot}[{\rm perfect}] - \sum_{\rm A} \Delta n_{\rm A} \mu_{\rm A} + q E_{\rm F} + E_{\rm corr}$$
(S1)

where $E_{tot}[D^q]$ is the total energy derived from a supercell calculation containing the defect D, and $E_{tot}[perfect]$ is the total energy for the perfect crystal using an equivalent supercell. The integer n_A indicates the number of atoms of type A (host atoms Ca/K or impurity atoms) that have been added to $(n_A > 0)$ or removed from $(n_A < 0)$ the supercell to form the defect, and the μ_A are the corresponding chemical potentials of these species. Chemical potentials represent the energy of the reservoirs with which atoms are being exchanged. The analog of the chemical potential for "charge" is given by the chemical potential of the electrons, i.e., the Fermi energy E_F . Finally, E_{corr} is a correction term for the electrostatic interactions of charged defects between supercells. For a neutral defective system (q = 0), the last two items E_F and E_{corr} are usually omitted.

The values of μ_A can be determined by thermodynamic equilibrium conditions of various phases containing the corresponding atomic species depending on the surfaceannealing conditions. According to the experimental conditions, the KCPOF:Eu²⁺ crystals were grown from the melt in an oxygen-deficient atmosphere, the atomic chemical potentials of the metallic elements are set at the upper bounds by the formation of metallic bulks with the corresponding species:

 $\mu K = \mu K \text{ (bulk)}, \qquad \mu Ca = \mu Ca \text{ (bulk)}, \qquad \mu Eu = \mu Eu \text{ (bulk)}$ (S2)

In the above equilibrium state, the total energies of the bulk materials, K(bcc), Ca(fcc), and Eu(hcp) were calculated to determine the μ_A values.

Figure S1. Fitting results of decay curves for KCPOF:xEu²⁺. (a) Monitored at 480 nm,
(b) monitored at 650 nm. Decay curves of KCPOF:0.006Eu²⁺ monitored at the sides of (e) cyan PL band and (f) red PL band.

Figure S2. Refinement results of the hosts obtained at (a) 900, (b) 950, (c) 1000 °C.

	900 °C	950 °C	1000 °C
unit cell	a = 7.3343(2) Å	a = 7.3332(1) Å	a = 7.3332(1) Å
	b = 5.8681(1) Å	b = 5.8667(0) Å	b = 5.8667(0) Å
	c = 12.6814(3) Å	c = 12.6779(1) Å	c = 12.6775(1) Å
	$\beta = 90.22^{\circ}$	$\beta = 90.22^{\circ}$	$\beta = 90.22^{\circ}$
cell volume	$V = 545.79(2) \text{ Å}^3$	$V = 545.42(1) \text{ Å}^3$	$V = 545.41(1) \text{ Å}^3$
crystal system	monoclinic	monoclinic	monoclinic
space group	$P2_{1}/m$	$P2_{1}/m$	$P2_{1}/m$
Ζ	4	4	4
$R_{ m wp}$	12.90%	8.73%	8.74%
$R_{ m p}$	7.88%	6.11%	6.09%
χ^2	4.433	1.636	1.637

Table S1. Crystallographic Data and Structure Refinement Parameters of the KCPOF hosts obtained at three temperatures

Table S2. Atomic parameters of the KCPOF host obtained at 900 $^{\circ}\mathrm{C}$

Atom	Wyckoff site	x/a	y/b	z/c	U [Å ²]
Ca1	2e	0.79792	3/4	0.07811	0.0109
Ca2	2e	0.70617	3/4	0.56558	0.0109
K1	2e	0.78576	1/4	0.41942	0.0120
K2	2e	0.70766	1/4	0.93252	0.0129
K3	2e	0.51358	1/4	0.68828	0.0240
K4	2e	0.97746	3/4	0.81697	0.0108
P1	2e	0.98801	1/4	0.66151	0.0083
P2	2e	0.48553	3/4	0.84050	0.0208
F1	2a	0	1/2	0	0.0170
F2	2d	1/2	0	1/2	0.0006
01	2e	0.65035	3/4	0.89511	0.0258
02	2e	0.97799	3/4	0.21572	0.0188
03	4f	0.88151	0.04448	0.62316	0.0062
O4	4f	0.37147	0.53109	0.85746	0.0104
05	2e	0.53966	3/4	0.71576	0.0490
O6	2e	0.84506	3/4	0.40813	0.0146

Atom	Wyckoff site	x/a	y/b	z/c	U [Ų]
Ca1	2e	0.80186	3/4	0.07660	0.0098
Ca2	2e	0.70317	3/4	0.56457	0.0062
K1	2e	0.78638	1/4	0.42164	0.0150
K2	2e	0.70351	1/4	0.93107	0.0182
K3	2e	0.51029	1/4	0.68522	0.0148
K4	2e	0.97914	3/4	0.81474	0.0207
P1	2e	0.98931	1/4	0.66099	0.0153
P2	2e	0.48769	3/4	0.83847	0.0108
F1	2a	0	1/2	0	0.0120
F2	2d	1/2	0	1/2	0.0103
01	2e	0.65512	3/4	0.90693	0.0213
02	2e	0.99506	3/4	0.21968	0.0176
03	4f	0.89105	0.03419	0.62516	0.0144
O4	4f	0.36560	0.53490	0.85897	0.0071
05	2e	0.53812	3/4	0.71728	0.0146
O6	2e	0.82842	3/4	0.39720	0.0175

Table S3. Atomic parameters of the KCPOF host obtained at 950 $^{\circ}\mathrm{C}$

Table S4. Atomic parameters of the KCPOF host obtained at 1000 $^{\circ}\mathrm{C}$

Atom	Wyckoff site	x/a	y/b	z/c	U [Ų]
Ca1	2e	0.80262	3/4	0.07644	0.0106
Ca2	2e	0.70353	3/4	0.56483	0.0061
K1	2e	0.78702	1/4	0.42173	0.0136
K2	2e	0.70464	1/4	0.93121	0.0148
K3	2e	0.51004	1/4	0.68503	0.0119
K4	2e	0.97851	3/4	0.81496	0.0190
P1	2e	0.98889	1/4	0.66032	0.0145
P2	2e	0.48828	3/4	0.83815	0.0102
F1	2a	0	1/2	0	0.0115
F2	2d	1/2	0	1/2	0.0088
01	2e	0.65256	3/4	0.90717	0.0207
02	2e	0.99265	3/4	0.22066	0.0145
03	4f	0.89146	0.03383	0.62501	0.0112
04	4f	0.36507	0.53591	0.85911	0.0051
05	2e	0.53685	3/4	0.71735	0.0123
O6	2e	0.82701	3/4	0.39642	0.0155

Bond	Length (Å)	Bond	Length (Å)	Bond	Length (Å)
Ca1-F1	2.27946(1)	Ca2-F2	2.24610(1)	K1-F2	2.75352(2)
Ca1-F1	2.27946(1)	Ca2-F2	2.24610(1)	K1-F2	2.75352(2)
Cal-O1	2.40792(2)	Ca2-O3	2.29045(1)	K1-O3	2.97015(2)
Cal-O2	2.29471(2)	Ca2-O3	2.29045(1)	K1-O3	2.97015(2)
Cal-O4	2.23629(1)	Ca2-O5	2.29135(2)	K1-O3	2.94850(2)
Cal-O4	2.23629(1)	Ca2-O6	2.32235(2)	K1-O3	2.94850(2)
				K1-O5	2.95256(3)
				K1-O6	2.96551(2)
				K1-O6	2.96551(2)
K2-F1	2.75474(2)	K3-F2	2.76722(2)	K4-F1	2.77061(2)
K2-F1	2.75474(2)	K3-F2	2.76722(2)	K4-F1	2.77061(2)
K2-O1	2.97364(2)	K3-O3	3.16652(3)	K4-O1	2.66482(3)
K2-O1	2.97364(2)	K3-O3	3.16652(3)	K4-O2	2.97556(2)
K2-O2	2.94408(3)	K3-O4	2.97182(2)	K4-O2	2.97556(2)
K2-O4	2.98586(2)	K3-O4	2.97182(2)	K4-O3	2.99453(2)
K2-O4	2.98586(2)	K3-O5	2.96826(2)	K4-O3	2.99453(2)
K2-O4	3.13568(2)	K3-O5	2.96826(2)	K4-O4	3.14874(3)
K2-O4	3.13568(2)	K3-O6	2.67507(3)	K4-O4	3.14874(3)

Table S5. The Ca-O/F and K-O/F distances based on the refinement of the KCPOF host obtained at 1000 $^{\circ}\mathrm{C}$

x	τ_1/ns	A ₁	τ_2/ns	A ₂	τ_3/ns	A3
0.002	135.5	0.704	677.6	0.827	1315.4	0.477
0.006	121.7	1.354	504.6	0.603	1140.9	0.651
0.010	101.9	2.671	665.5	0.480	1391.8	0.385
0.015	81.3	6.052	608.7	0.657	1303.3	0.450
0.020	67.8	8.835	464.7	0.680	1176.8	0.599
0.030	75.1	8.777	534.6	0.681	1201.7	0.463

Table S6. Tri-exponential fitting results of decay curves for KCPOF: xEu^{2+} monitored at 480 nm.

Table S7. Bi-exponential fitting results of decay curves for KCPOF: xEu^{2+} monitored at 650 nm.

	<i>u</i> /115
0.002 901.1 0.276 2254.8 1.133	2134.7
0.006 695.8 0.497 2218.9 1.101	2030.0
0.010 817.6 0.769 2217.4 0.898	1881.5
0.015 301.3 1.641 2086.1 1.099	1769.5
0.020 720.3 0.858 2094.2 0.867	1745.3
0.030 652.0 0.789 2151.5 0.958	1852.0

*
$$\tau = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$

Calculation of average distance between $Eu^{2\scriptscriptstyle +}$ ions

The average distance *R* between the nearby Eu^{2+} ions can be estimated by the following equation^[5,6]

$$R = 2 \left(\frac{3V}{4\pi x_c N}\right)^{1/3}$$
(S3)

where x_c is the concentration of Eu²⁺, *V* represents the volume of the unit cell (545.41 Å³ according to the refinement result), and *N* refers to the number of the cation sites occupied by activators per unit cell. x_cN stands for the number of Eu²⁺ ions per unit cell.

Atom	Wyckoff site	x/a	y/b	z/c
Ca1	2e	0.80058	3/4	0.07354
Ca2	2e	0.70581	3/4	0.56639
K1	2e	0.78671	1/4	0.42304
K2	2e	0.70447	1/4	0.93119
К3	2e	0.51240	1/4	0.68742
K4	2e	0.98996	3/4	0.81184
P1	2e	0.99157	1/4	0.66169
P2	2e	0.49013	3/4	0.83647
F1	2a	0	1/2	0
F2	2d	1/2	0	1/2
01	2e	0.66829	3/4	0.90329
02	2e	0.99564	3/4	0.21613
03	4f	0.88627	0.03305	0.62585
O4	4f	0.37786	0.53315	0.86410
05	2e	0.53161	3/4	0.71682
O6	2e	0.81856	3/4	0.39077

Table S8. Atomic parameters of the KCPOF host obtained at 900 °C after structural optimization with DFT theory

Table S9. Atomic parameters of the KCPOF host obtained at 1000 °C after structural optimization with DFT theory

Atom	Wyckoff site	x/a	y/b	z/c
Ca1	2e	0.80222	3/4	0.07524
Ca2	2e	0.70684	3/4	0.56500
K1	2e	0.78534	1/4	0.42130
K2	2e	0.70228	1/4	0.93298
K3	2e	0.51542	1/4	0.68754
K4	2e	0.98360	3/4	0.81162
P1	2e	0.99115	1/4	0.66130
P2	2e	0.48947	3/4	0.83618
F1	2a	0	1/2	0
F2	2d	1/2	0	1/2
01	2e	0.66377	3/4	0.90651
02	2e	0.00111	3/4	0.21626
03	4f	0.88729	0.03301	0.62415
04	4f	0.37574	0.53310	0.86169
05	2e	0.53824	3/4	0.71749
O6	2e	0.81594	3/4	0.38867

Figure S3. XRD patterns of KCPOF: xEu^{2+} (x = 0.006, 0.010, 0.020, and 0.030) prepared at 1000 °C.

	λex	= 360 nm	$\lambda_{\rm ex} = 390 \ \rm nm$			
X	IQE	EQE	IQE	EQE		
0.002	94.0%	58.1%	97.8 %	37.0%		
0.006	91.5%	66.9%	94.5 %	51.6%		
0.010	92.9%	76.6%	76.4 %	46.5%		
0.015	85.8%	68.6%	66.2 %	44.5%		
0.020	80.5%	62.1%	72.0 %	51.7%		
0.030	67.4%	55.1%	63.7 %	51.1%		

Table S10. Internal and external quantum efficiencies of KCPOF: xEu^{2+} excited at 360 and 390 nm

Figure S4. (a) XRD patterns of the samples KCPOF: $0.006Eu^{2+}$ with various temperature ranging from 298 to 523 K.

<i>I</i> /m	R	R	R	R	R	R	R	R	R	R1	R1	R1	R1	R1	R1
А	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5
50	67	73	76	71	67	63	80	63	3	34	65	50	67	86	66
100	68	73	77	72	67	63	81	64	5	34	66	49	67	87	66
150	69	74	78	73	69	64	83	67	12	37	67	50	68	87	68
200	73	77	79	77	73	68	84	73	27	44	71	55	72	88	73
250	80	82	83	83	80	75	87	81	48	56	79	64	79	90	80
300	89	88	86	89	88	83	90	89	75	70	88	77	88	92	90
350	86	86	85	87	86	80	89	87	66	66	85	74	85	92	87

Table S11. R1-R15 color rendering index values versus driving currents (I)

[1] J. Qiao, L. Ning, M. S. Molokeev, Y. C. Chuang, Q. Liu, Z. Xia, J. Am. Chem. Soc. 2018, 140, 9730-9736.

[2] S. B. Zhang, J. E. Northrup, *Phys. Rev. Lett.* 1991, 67, 2339-2342.

[3] C. G. Van de Walle, D. B. Laks, G. F. Neumark, S. T. Pantelides, *Phys. Rev. B* 1993, 47, 9425-9434.

[4] C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C. G. Van de Walle, *Rev. Modern Phys.* **2014**, *86*, 253-305.

[5] L. G. Van Uitert, J. Electrochem. Soc. 1967, 114, 1048.

[6] C.-H. Huang, Y.-C. Chiu, Y.-T. Yeh, T.-S. Chan, T.-M. Chen, ACS Appl. Mater. Interfaces 2012, 4, 6661-6668.