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1 Experimental Section

1.1 General Information

All the reagents and solvents used for the synthesis were purchased from Aldrich
and Acros companies and used without further purification. The synthesis procedure
was presented in Scheme S1. The 'H and 13C NMR data were recorded on a Bruker
AVANCE 500 spectrometer at 500 MHz and 125 MHz respectively, using
tetramethylsilane (TMS) as the internal standard and DMSO-Dg or CDCl; as solvent.
The phase composition of evaporated film of samples was examined by X-ray

diffraction (XRD, Rigaku D/MAX 2550) in the angular range of 20 = 10-60- with Cu
1



Ka radiation. The operating voltage and current were kept at 50 kV and 200 mA in an
ambient environment. The infrared (IR) spectra in the range of 400-4000 cm™!' was
acquired on a Fourier transform infrared spectrometer (Brucker, VERTEX 80V) with
KBr as basement. The element contents of the compounds were characterized by a
Flash EA 1112, CHNS-O elemental analysis instrument. The MALDI-TOF mass
spectra were recorded by an AXIMA-CFRTM plus instrument. Thermal gravimetric
analysis (TGA) was undertaken on a PerkinElmer thermal analysis system with a
heating rate of 10 °C min’!. Differential scanning calorimetry (DSC) analysis was
carried out through a NETZSCH (DSC-204) instrument at 10 °C min! while flushing
with nitrogen. UV-vis absorption spectra were recorded on a UV-3100
spectrophotometer. Fluorescence measurements were carried out with a RF-5301PC.
The fluorescence lifetime was measured using FLS920 Spectrometer with a 375 nm
picosecond pulsed light emitting diode excitation source (pulse with: 898.3 ps). The

photoluminescence quantum yield (PLQY, @) is measured by integrating sphere.

1.2 Electrochemical Measurement

Cyclic voltammetry (CV) was performed with a BAS 100W Bioanalytical
Systems, using a glass carbon disk (® = 3 mm) as the working electrode, a platinum
wire as the auxiliary electrode with a porous ceramic wick, Ag/Ag" as the reference
electrode, standardized for the redox couple ferricinium/ferrocene. In each case, the
anodic scan was performed in dichloromethane (DCM), while the cathodic scan was
conducted in dry degassed DMF. All solutions were purged with nitrogen stream for
10 min before measurements. The procedure was performed at room temperature and a
nitrogen atmosphere was maintained over the solution during measurements. The
HOMO and LUMO energy levels of the materials versus the vacuum levels were
calculated from the estimated onset potential of oxidation and reduction by assuming
the absolute energy level of ferrocene was 4.8 eV below the vacuum level.
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where 4.8 eV is the absolute energy level of Fc below vacuum, ® ox and Eed are the

onset potentials of the materials obtained from positive and negative CV scans,

respectively, and Fe/Fe™ and Fe/Fe™ are half wave potentials of ferrocene redox couple

obtained from positive and negative CV scans, respectively.
1.3 Device Fabrication

ITO-coated glass with a sheet resistance of 20 Q square™! was used as the substrate.
Before device fabrication, the ITO glass substrates were cleaned with isopropyl alcohol
and deionized water, dried in an oven at 120 °C, treated with UV-zone for 20 min, and
finally transferred to a vacuum deposition system with the base pressure lower than
5x10 Pa for organic and metal deposition. The devices were fabricated by evaporating
organic layers with an evaporation rate of 0.5~1 A s!. The cathode was completed
through thermal deposition of LiF at a deposition rate of 0.1 A s°!, and then capped with
Al through thermal deposition at a deposition rate of 3~5 A s-!. EL luminescence,
spectra and CIE color coordinates (1931) were measured with a Spectrascan PR-650
photometer, and the current-voltage characteristics were measured with a computer-
controlled Keithley 2400 SourceMeter under ambient atmosphere.

The transient EL decay was tested by an Agilent 8114 A pulse generator (100 V/2
A) to generate rectangular pulse voltages. The pulse repetition rate was 1 kHz with the
width of 100 ps. The EL signal was detected using a lens coupled with the optical fiber
connected to a Hamamatsu photomultiplier (H10721-20) with time resolution of 0.57
ns. The photomultiplier was connected to one of the channels of a digital oscilloscope
(Tektronix DPO7104, sampling rate: 5 GS s™!; resolution: 100 pV) with 50 Q input

resistance.



1.4 Computational Detail

The ground-state (Sy) and the lowest singlet excited state (S;) geometries were
optimized at the B3LYP/6-31G(d,p) level, which is a common method to provide
molecular geometries and the optimized outcome is in good agreement with the

experiment result.

2. Synthesis of Materials
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Scheme S1. Synthesis Routes of C-BPyIA and N-BPyIA. a) Pd(dppf),Cl,, KOAc, 1,4-
dioxane, 85 °C, N, protection, 48 h; b) NalO,4, RuCl;, CHCl;, CH3CN, overnight; c)
CH3COONH,, 120 °C, N, protection, 2 h; d) Suzuki coupling reaction: Pd(PPhs),,

K,COs, toluene, 85 °C, 48 h under N, protection.
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3. Characterization

3.1 Time-of-flight mass spectra
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Fig. S1. The time-of-flight mass spectra of C-BPyIA (left) and N-BPyIA (right).
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Fig. S2. XRD patterns of C-BPylIA and N-BPyIA in evaporated film.



3.2 Optical Properties
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Fig. S3. Absorption and PL spectra of A) PAnP and B) Pyl in THF dilute solution.
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Fig. S4. Absorption spectra of PAnP, Pyl, C-BPylA and N-BPyIA in THF dilute

solution.
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Fig. S5. Phosphorescence of Pyl in THF at 78 K.
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Fig. S6. Absorption and PL spectra of C-BPylA and N-BPyIA in doped PMMA films

(5 wt%).
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Fig. S7. PL spectra of N-BPyIA in different solvents.
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Fig. S8. PL spectra of C-BPylIA in different solvents.
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3.3 Electroluminescence properties of the devices
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Fig. S10. Current density versus voltage characteristics of the electron-only A) and

hole-only devices B) for C-BPyIA and N-BPylA.
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Fig. S11. Energy levels in devices of A) non-doped device, B) doped device as well as

the molecular structures of transport materials.
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Fig. S12. PL of neat film and EL of the nondoped device for C-BPylIA and N-BPyIA.
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Fig. S13. Absorption of C-BPyIA and N-BPyIA neat film and PL of CBP neat film.
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Fig. S14. The EL spectra of non-doped devices A, B and doped devices C, D under the

different voltages.

Non-doped devices A, B: ITO/HATCN (6 nm)/TAPC (25 nm)/TCTA (15 nm)/ C-

BPylIA or N-BPyIA (20 nm)/TPBi (40 nm)/LiF (1.2 nm)/Al (120 nm);

Doped devices C, D: ITO/HATCN (6 nm)/ TAPC (25 nm)/TCTA (15 nm)/ C-BPyIA

or N-BPyIA/CBP-15 wt% (20 nm)/TPBi (40 nm)/LiF (1.2 nm)/Al (120 nm).
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Fig. S15. Power efficiency versus luminance of non-doped devices A, B and doped

devices C, D.
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Fig. S16. Voltage dependent EQE of nondoped device A, B and doped device C, D at

different voltages.
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Fig. S17. Transient EL decay of non-doped A) and doped devices B) based on N-BPyIA

emitter at different voltages.
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Table S1. EL performance of C-BPylA and N-BPyIA as well as other efficiently blue-

emitting materials based An in recent years.

Physical Properties

Device Properties
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