$A_2Bi_2(SO_4)_2Cl_4$ (A = NH₄, K, Rb): Achieving Subtle Balance of Large Second Harmonic Generation Effect and Sufficient Birefringence in Sulfate Nonlinear Optical Materials

Kaichuang Chen,^{ab} Yi Yang,^{cd} Guang Peng,^a Shunda Yang,^{ad} Tao Yan,^a Huixin Fan,^{ad} Zheshuai Lin,^{cd} and Ning Ye^{*a}

^{a.} Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

^{b.} College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China

^{c.} Beijing Center for Crystal R&D, Key Lab of Functional Crystals and Laser Technology of Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China ^{d.} University of Chinese Academy of Sciences, Beijing 100049, China

E-mail: nye@fjirsm.ac.cn

Table of Contents

	Title	Page
Table S1	Selected bond lengths (Å) for $A_2Bi_2(SO_4)_2CI_4(A = NH_4, K, Rb)$	S 3
Table S2	Atomic coordinates (×10 ⁴) and equivalent isotropic displacement parameters	\$3
	(Å ² ×10 ³) for (NH ₄) ₂ Bi ₂ (SO ₄) ₂ Cl ₄	
Table S3	Atomic coordinates (×10 ⁴) and equivalent isotropic displacement parameters	S4
	$(Å^2 \times 10^3)$ for K ₂ Bi ₂ (SO ₄) ₂ Cl ₄	
Table S4	Atomic coordinates (×10 ⁴) and equivalent isotropic displacement parameters	S4
	(Å ² ×10 ³) for Rb ₂ Bi ₂ (SO ₄) ₂ Cl ₄	
Table S5	Anisotropic displacement parameters ($Å^2 \times 10^3$) for (NH ₄) ₂ Bi ₂ (SO ₄) ₂ Cl ₄	S4
Table S6	Anisotropic displacement parameters ($Å^2 \times 10^3$) for $K_2Bi_2(SO_4)_2Cl_4$	S5
Table S7	Anisotropic displacement parameters ($Å^2 \times 10^3$) for $Rb_2Bi_2(SO_4)_2Cl_4$	\$5
Figure S1	Photograph of Rb ₂ Bi ₂ (SO ₄) ₂ Cl ₄ crystals	S6
Figure S2	Simulated and experimental powder X-ray diffraction patterns of $(NH_4)_2Bi_2(SO_4)_2Cl_4$	S6
Figure S3	Simulated and experimental powder X-ray diffraction patterns of $K_2Bi_2(SO_4)_2Cl_4$	S7
Figure S4	Simulated and experimental powder X-ray diffraction patterns of $Rb_2Bi_2(SO_4)_2Cl_4$	S7
Figure S5	EDS analysis for $(NH_4)_2Bi_2(SO_4)_2Cl_4$	S8
Figure S6	EDS analysis for $K_2Bi_2(SO_4)_2Cl_4$	S8
Figure S7	EDS analysis for Rb ₂ Bi ₂ (SO ₄) ₂ Cl ₄	S8
Figure S8	The UV-Vis-NIR reflectance spectrum of $(NH_4)_2Bi_2(SO_4)_2Cl_4$.	S9
Figure S9	The UV-Vis-NIR reflectance spectrum of $K_2Bi_2(SO_4)_2Cl_4$.	S 9
Figure S10	The UV-Vis-NIR reflectance spectrum of $Rb_2Bi_2(SO_4)_2Cl_4$	S10
Figure S11	TG curve of (NH ₄) ₂ Bi ₂ (SO ₄) ₂ Cl ₄	S10
Figure S12	TG curve of $K_2Bi_2(SO_4)_2Cl_4$	S11
Figure S13	TG curve of Rb ₂ Bi ₂ (SO ₄) ₂ Cl ₄	S11
Figure S14	Simulated and experimental powder X-ray diffraction patterns of $(NH_4)_2Bi_2(SO_4)_2CI_4$	S12
	heated at 180 °C	
Figure S15	Simulated and experimental powder X-ray diffraction patterns of $Rb_2Bi_2(SO_4)_2CI_4$	S12
	heated at 180 °C	
Figure S16	Electronic band structure of $A_2Bi_2(SO_4)_2CI_4$ (A = NH ₄ , K, Rb)	\$13
Figure S17	Calculated refractive index of (NH ₄) ₂ Bi ₂ (SO ₄) ₂ Cl ₄	\$13
Figure S18	Calculated refractive index of K ₂ Bi ₂ (SO ₄) ₂ Cl ₄	S14
Figure S19	Calculated refractive index of Rb ₂ Bi ₂ (SO ₄) ₂ Cl ₄	S14
	Anionic group theory	\$15

	2				
(NH ₄) ₂ Bi ₂ (SO ₄₎₂ C		K ₂ Bi ₂ (SO ₄) ₂ Cl ₄		Rb ₂ Bi ₂ (SO ₄) ₂ Cl ₄	
Bi(1)-Cl(1)	2.478(3)	Bi(1)-Cl(1)	2.479(3)	Bi(1)-Cl(1)	2.474(4)
Bi(1)-Cl(2)	2.548(3)	Bi(1)-Cl(2)	2.563(3)	Bi(1)-Cl(2)	2.561(4)
Bi(1)-O(2)	2.334(9)	Bi(1)-O(1)	2.338(9)	Bi(1)-O(3)#2	2.452(12)
Bi(1)-O(3)#1	2.446(9)	Bi(1)-O(3)#2	2.606(10)	Bi(1)-O(1)#1	2.317(13)
Bi(1)-O(4)#2	2.643(9)	Bi(1)-O(4)#3	2.465(9)	Bi(1)-O(2)#3	2.645(13)
S(1)-O(1)	1.461(10)	K(1)-Cl(1)#4	3.419(5)	Rb(1)-Cl(1)#4	3.485(5)
S(1)-O(2)	1.496(10)	K(1)-Cl(1)#5	3.208(4)	Rb(1)-Cl(1)#5	3.293(4)
S(1)-O(3)	1.476(9)	K(1)-Cl(2)#6	3.278(5)	Rb(1)-Cl(1)	3.897(5)
S(1)-O(4)	1.470(10)	K(1)-Cl(2)#7	3.526(5)	Rb(1)-Cl(2)	3.577(5)
N(1)-H(1A)	0.89	K(1)-O(1)#7	2.761(10)	Rb(1)-Cl(2)#6	3.389(5)
N(1)-H(1B)	0.89	K(1)-O(2)	2.754(10)	Rb(1)-O(3)#1	3.203(13)
N(1)-H(1C)	0.89	K(1)-O(2)#6	3.147(10)	Rb(1)-O(3)	2.870(12)
N(1)-H(1D)	0.8899	K(1)-O(4)#7	3.075(9)	Rb(1)-O(1)#1	2.873(13)
		K(1)-O(4)#6	2.772(9)	Rb(1)-O(4)	3.239(13)
		S(1)-O(1)	1.490(9)	Rb(1)-O(4)#6	2.876(13)
		S(1)-O(2)	1.466(10)	S(1)-O(3)	1.476(12)
		S(1)-O(3)	1.486(10)	S(1)-O(1)	1.494(13)
		S(1)-O(4)	1.480(9)	S(1)-O(4)	1.479(13)
				S(1)-O(2)	1.476(13)

Table S1. Selected bond lengths (Å) for $A_2Bi_2(SO_4)_2CI_4(A = NH_4, K, Rb)$.

Symmetry transformations used to generate equivalent atoms:

 $\mathsf{For}\;(\mathsf{NH}_4)_2\mathsf{Bi}_2(\mathsf{SO}_4)_2\mathsf{Cl}_4\text{: $\$1$ x+1, y, z; $\$2$ x+1/2, -y+3/2, -z+1; $\$3$ x-1, y, z; $\$4$ x-1/2, -y+3/2, -z+1.}$

For K₂Bi₂(SO₄)₂Cl₄: #1 x, y-1, z; #2 x+1/2, -y+1/2, -z+1; #3 x+1, y, z; #4 x-1, y+1, z; #5 x-1/2, -y+1/2, -z+1; #6 -x+1, y+1/2, -z+1/2; #7 x, y+1, z; #8 x+1, y-1, z; #9 -x+1, y-1/2, -z+1/2; #10 x-1, y, z.

For Rb₂Bi₂(SO₄)₂Cl₄: #1 -x+1, y+1/2, -z-1/2; #2 -x, y+1/2, -z-1/2; #3 -x+1/2, -y-1, z-1/2; #4 x+1, y, z; #5 x+1/2, -y-3/2, -z-1; #6 -x+1, y-1/2, -z-1/2; #7 x-1/2, -y-3/2, -z-1; #8 x-1,y,z; #9 -x,y-1/2,-z-1/2; #10 -x+1/2, -y-1, z+1/2.

Table S2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for $(NH_4)_2Bi_2(SO_4)_2Cl_4$. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	х	У	Z	U(eq)
Bi(1)	9875(1)	8667(1)	6171(1)	6(1)
S(1)	4955(5)	8189(4)	6099(2)	4(1)
Cl(1)	10657(5)	11662(4)	5527(2)	10(1)
CI(2)	9036(6)	10112(4)	7617(2)	8(1)
O(1)	6203(15)	6754(13)	6497(7)	13(2)
O(2)	6480(15)	9618(13)	5823(6)	8(2)
N(1)	5150(20)	2991(15)	6556(7)	12(2)
O(3)	3459(14)	8969(13)	6723(6)	6(2)
O(4)	3737(16)	7526(14)	5361(6)	9(2)
H(1A)	5037	2563	6024	14
H(1B)	6165	2393	6832	14
H(1C)	3941	2846	6832	14
H(1D)	5477	4163	6536	14

Atom	х	у	Z	U(eq)
Bi(1)	9850(1)	1363(1)	3838(1)	5(1)
K(1)	5231(6)	7041(4)	3422(2)	9(1)
Cl(1)	10703(5)	-1697(4)	4488(2)	7(1)
S(1)	4925(5)	1821(4)	3870(2)	2(1)
Cl(2)	8940(5)	-97(4)	2352(2)	6(1)
O(1)	6429(15)	365(13)	4170(6)	4(2)
O(2)	6161(15)	3312(13)	3466(6)	7(2)
O(3)	3635(16)	2474(14)	4624(6)	8(2)
O(4)	3436(14)	984(12)	3236(6)	4(2)

Table S3. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for K₂Bi₂(SO₄)₂Cl₄. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

Table S4. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for

$Rb_2Bi_2(SO_4)_2Cl_4$. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.						
	Atom	х	У	Z	U(eq)	
	Bi(1)	150(1)	-3652(1)	-3841(1)	6(1)	
	Rb(1)	4724(3)	-7970(2)	-3430(1)	10(1)	
	S(1)	4947(7)	-8174(5)	-1105(2)	4(1)	
	CI(1)	-655(7)	-6632(5)	-4464(2)	8(1)	
	CI(2)	990(7)	-5100(5)	-2385(3)	8(1)	
	O(3)	3445(19)	-8972(17)	-1723(7)	6(2)	
	O(1)	6460(20)	-9591(17)	-819(8)	7(2)	
	O(4)	6210(20)	-6748(18)	-1522(8)	9(2)	
	O(2)	3670(20)	-7505(18)	-377(8)	8(2)	

Table S5. Anisotropic displacement parameters $(Å^2 \times 10^3)$ for $(NH_4)_2Bi_2(SO_4)_2CI_4$.

The anisotropic displacement factor exponent takes the form	: -2π ² [h ² a* ² U11 +	. + 2hka* b*U12]
---	---	-------------------

		-				
	U11	U22	U33	U23	U13	U12
Bi(1)	7(1)	6(1)	5(1)	-1(1)	0(1)	0(1)
S(1)	3(1)	4(1)	5(1)	-1(1)	-3(1)	-2(1)
CI(1)	14(2)	9(1)	8(1)	4(1)	-2(1)	-3(1)
CI(2)	12(2)	9(1)	4(1)	-2(1)	2(1)	-2(1)
O(1)	7(4)	8(4)	24(5)	4(4)	-3(4)	-1(4)
O(2)	9(4)	7(4)	8(4)	1(3)	-4(3)	-2(3)
N(1)	20(6)	11(4)	4(5)	-1(4)	-1(5)	-5(5)
O(3)	5(4)	10(4)	5(3)	0(3)	-2(3)	-2(3)
O(4)	10(4)	12(4)	6(4)	-7(3)	-1(3)	0(3)

he anisotropic di	splacement fact	or exponent tal	kes the form: -2	2π² [h² a*² U11 -	+ + 2hka* b*l	J12].
	U11	U22	U33	U23	U13	U12
Bi(1)	5(1)	6(1)	3(1)	0(1)	0(1)	0(1)
K(1)	18(2)	5(1)	4(1)	-2(1)	-1(1)	0(1)
CI(1)	9(2)	7(1)	5(1)	3(1)	1(1)	3(1)
S(1)	2(1)	4(1)	2(1)	-1(1)	1(1)	-1(1)
CI(2)	8(2)	8(1)	3(1)	-3(1)	-2(1)	1(1)
O(1)	4(2)	5(2)	4(2)	0(1)	0(1)	0(1)
O(2)	9(5)	4(4)	8(4)	3(4)	0(4)	2(4)
O(3)	6(5)	12(5)	7(5)	-5(4)	-1(4)	-1(4)
O(4)	4(2)	4(2)	4(2)	0(1)	0(1)	0(1)

Table S6. Anisotropic displacement parameters $(Å^2 \times 10^3)$ for $K_2Bi_2(SO_4)_2CI_4$.

Table S7. Anisotropic displacement parameters $(Å^2 \times 10^3)$ for $Rb_2Bi_2(SO_4)_2Cl_4$.

The anicotro	aic dic	nlacomont	factor ov	nonont	takes th	o form.	2 π2 [h2 n	*21111	т т	2hka*	h*1117	1
The anisotrop	JIC UIS	placement	Iactor ex	ponent	lakes li	le lonn:	-2/(-[11- d	- 011	+ +	ZIIKd	0.017	·]·

			•		•		
		U11	U22	U33	U23	U13	U12
	Bi(1)	8(1)	6(1)	4(1)	0(1)	0(1)	0(1)
	Rb(1)	16(1)	6(1)	6(1)	1(1)	1(1)	0(1)
	S(1)	4(1)	4(1)	3(1)	-1(1)	2(1)	0(1)
	Cl(1)	10(1)	8(1)	6(1)	-1(1)	0(1)	-1(1)
	CI(2)	9(1)	8(1)	7(1)	1(1)	-1(1)	0(1)
	O(3)	6(3)	6(3)	5(3)	0(1)	0(1)	0(1)
	O(1)	7(3)	7(3)	7(3)	0(1)	0(1)	0(1)
	O(4)	8(3)	8(3)	9(3)	0(1)	0(1)	0(1)
_	O(2)	8(3)	8(3)	8(3)	-1(1)	0(1)	0(1)

Figure S1. Photograph of Rb₂Bi₂(SO₄)₂Cl₄ crystals.

Figure S2. Simulated and experimental powder X-ray diffraction patterns of $(NH_4)_2Bi_2(SO_4)_2CI_4$.

Figure S3. Simulated and experimental powder X-ray diffraction patterns of K₂Bi₂(SO₄)₂Cl₄.

Figure S4. Simulated and experimental powder X-ray diffraction patterns of Rb₂Bi₂(SO₄)₂Cl₄.

Figure S5. EDS analysis for $(NH_4)_2Bi_2(SO_4)_2Cl_4$.

Figure S6. EDS analysis for $K_2Bi_2(SO_4)_2Cl_4$.

Figure S7. EDS analysis for Rb₂Bi₂(SO₄)₂Cl₄.

Figure S8. The UV-Vis-NIR reflectance spectrum of (NH₄)₂Bi₂(SO₄)₂Cl₄

Figure S9. The UV-Vis-NIR reflectance spectrum of $K_2Bi_2(SO_4)_2CI_4$.

Figure S10. The UV-Vis-NIR reflectance spectrum of Rb₂Bi₂(SO₄)₂Cl₄.

Figure S11. TG curve of $(NH_4)_2Bi_2(SO_4)_2CI_4$. The slight weight losse at about 120 °C can be attributed to the

adsorption water.

Figure S12. TG curve of K₂Bi₂(SO₄)₂Cl₄.

Figure S13. TG curve of Rb₂Bi₂(SO₄)₂Cl₄. The slight weight losse at about 120 °C can be attributed to the

adsorption water.

Figure S14. Simulated and experimental powder X-ray diffraction patterns of (NH₄)₂Bi₂(SO₄)₂Cl₄ heated at 180 °C.

Figure S15. Simulated and experimental powder X-ray diffraction patterns of Rb₂Bi₂(SO₄)₂Cl₄ heated at 180 °C.

Figure S16. Electronic band structure of A₂Bi₂(SO₄)₂Cl₄ (A = NH₄, K, Rb)

Figure S17. Calculated refractive index of $(NH_4)_2Bi_2(SO_4)_2Cl_4$.

Figure S18. Calculated refractive index of $K_2Bi_2(SO_4)_2CI_4$.

Figure S19. Calculated refractive index of Rb₂Bi₂(SO₄)₂Cl₄.

Anionic group theory

The macroscopic second-order susceptibility $\chi^{(2)}$ can be expressed by Eq:1

$$\chi_{ijk}^{(2)} = \frac{F}{V} \sum_{p} \sum_{i,j,k} \alpha_{ii} \alpha_{jj} \alpha_{kk} \beta_{ijk}^{(2)}(P)$$

where *F* is the correction factor of the localized field; $\stackrel{\alpha_{ii}}{ii}$, $\stackrel{\alpha_{jj}}{jj}$, and $\stackrel{\alpha_{kk}}{k}$ are the direction cosines between the macroscopic coordinates of the crystal and the microscopic coordinates of $[SO_4]^{2-}$ groups, and $\stackrel{\beta_{ijk}}{ijk}$ is the microscopic second-order susceptibility tensors of $[SO_4]^{2-}$ group. According to Kleinman symmetry relations,² $[SO_4]^{2-}$ group possesses only one nonvanishing second-order susceptibility $\stackrel{\beta_{123}}{}$. Therefore, the geometrical factor g can be derived to be³

$$\chi_{ijk}^{(2)} = \frac{F}{V} \cdot g_{ijk} \cdot \beta_{123}^{(2)}$$

 $=\sum_{P}^{n} [(\alpha(i1)\alpha(j2)\alpha(k3) + \alpha(i1)\alpha(j3)\alpha(k2)) + \alpha(i2)\alpha(j1)\alpha(k3) + \alpha(i2)\alpha(j3)\alpha(k1)$

 $g = max(g_{ijk})$

The structural criterion C is defined as

$$C = \frac{g}{n}$$

Reference

(1) C. T. Chen, Y. C. Wu and R. K. Li, Int. Rev. Phys. Chem., 1989, 8, 65-91.

 g_{ijk}

(2) D. A. Kleinman, Phys. Rev., 1962, **126**, 1977.

(3) N. Ye, Q. X. Chen, B. C. Wu and C. T. Chen, J. Appl. Phys., 1998, 84, 555-558.