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The Model Hamiltonian We use the well-known Peierls Hamiltonian [1, 2] for the description of

the charge transport in organic semiconductors:
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where the first two terms are the electronic part, the third the phonon part and the latter their in-

teraction. Only one electronic state
∣∣i〉 per molecular site is considered, e.g. the molecular HOMO

for hole transport; Ei is the electronic energy of the site, Vij is the transfer integral between nearest

neighbour pairs and QM is the dimensionless coordinate of the normal mode with frequency ωM .

gi,M and gij,M are respectively the local and the non-local electron-phonon couplings; the former

describes the modulation of the site energies, while the latter concerns the modulation of the trans-

fer integrals due to the normal modes M .
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The Vij can be evaluated as [3]:

Vij =
〈
φ0
i

∣∣F∣∣φ0
j

〉
, (2)

where φ0
i and φ0

j are the localized HOMOs of states i and j, respectively, andF is the Fock operator

of the system. The suffix 0 indicates that the orbitals are unperturbed.

Following our previous work [4], we have represented the mode M as a vector of Cartesian

displacements QM =
{
xMk
}

, so that gij,M can be expressed as:

gij,M = ∇Vij ·QM . (3)

Here,∇Vij is the Cartesian gradient of the transfer integral, i.e. the derivative of the transfer integral

with respect to the Cartesian displacement of an atom k:

∇Vij =

{
∂Vij
∂xk

}
. (4)

This approach is particularly suited for the development of a fast protocol because the first term of

the product (∇Vij) only includes 6NA differentiations (where NA is the number of atoms in one

molecule) and the second term does not depend on the transfer integral, so it needs to be evaluated

only once.

The non-local electron-phonon coupling is related to the variance of the transfer integral

σ2
ij =

〈
(Vij − 〈Vij〉)2〉 via the relation [5]:

σ2
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)
, (5)

where kBT is the thermal energy.
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It is important to point out that in our discussion we have only discussed about the non-local

electron-phonon coupling. Indeed, the local electron-phonon coupling is normally due to high-

frequency modes (faster than the carrier) that have the effect of renormalizing both the transfer

integral and its fluctuation by the same amount. In this regime of transport, the renormalization

of both V and σ has minimal effect on the mobility, as shown in ref. 6; therefore, we have not

discussed it in our work. Moreover, since we are comparing polymorphs, i.e. materials made by

identical molecules, the renormalization correction is similar for all the polymorphs, that is, it does

not affect the results discussed in this work.

Theoretical models for charge transport It has been shown that the modulation of the transfer

integral as a consequence of coupling to the phonon modes is of the same order of magnitude as the

transfer integral itself [1], comparable with the characteristic timescale of carrier dynamics [7, 8].

More importantly, σ is now considered the factor ultimately limiting charge transport [1, 9], being

one of the most important quantities involved in several theories for the evaluation of the charge

mobility in organic semiconductors [6, 10, 11].

These models usually start from the Green-Kubo linear response theory [12, 13], which

relates the particle’s mean-squared displacements to the current-current autocorrelation function

C+,x(t) =
〈
Ĵx(t), Ĵx(0)

〉
, where Ĵx is the current operator along a generic x direction. It is

important to notice that, even if we are presenting the one-dimensional (1-D) case, generalization

to 2-D or 3-D is straightforward (vide infra). Performing the time derivative and writing the current

operator in terms of the position operator [14], it has been shown that C+,x(t) is also related to the
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diffusion coefficient Dx(t), defined as

Dx(t) =
1

2

d∆X2(t)

dt
, (6)

by the following equation:

Dx(t) =
1

2

∫ t

0

C+,x(t
′)dt′. (7)

Different theories deal with this relation in different ways [10, 15–18], e.g. by factorizing the

correlation function into Green’s function terms and matrix element of the current operator [10],

both averaged over the phononic part [15] or replacing C+ with a mean-square momentum matrix

element between different states [18].

The transient localization theory (TLT)[16, 17], which has the interesting feature of explaining the

band-like temperature dependence also for mobilities that are too small to be described by band

transport, resorts to the relaxation time approximation (RTA) assumption. In the RTA, the dynam-

ical properties of the actual system can be expressed in terms of those of a reference system from

which it decays over time: C+,x(t) = Cref
+,x(t)e

−t/τ . Usually [17] the reference system includes

only static disorder, i.e. the molecular positions are frozen, and the decay time τ is the timescale

over which disorder fluctuates because of the intermolecular oscillations (τ ≈ 1 ps)[6].

Substituting this decay form in eq. 7, we get

Dx(t) =
1

2

∫ t

0

Cref
+,x(t

′)e−t
′/τdt′, (8)

which has the form of a Laplace transform L. Using the properties of Laplace transform , we get

1

τ
L2
x(τ) = Ld2∆X2(t)

dt2
, (9)
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where L2
x(τ) =

∫∞
0

d∆X2(t)
dt

e−t/τdt has been called transient localization length, since it corre-

sponds to the typical distance covered by a charge before disorder fluctuates[17].

Resorting now to the Lehmann’s representation of the velocity autocorrelation function [13],

L2
x(τ) can be expressed as

L2
x(τ) =

1

Z

∑
n,m

e−En/(kBT )
∣∣〈n∣∣[H,X ]

∣∣m〉∣∣2 2

( 1
τ
)2 + (Em − En)2

, (10)

where
∣∣m〉 and

∣∣n〉 are two generic eigenvectors, with corresponding eigenvalues Em and En,

of the Hamiltonian H reported in eq. 1. When dealing with realistic systems, it has been shown

[9, 16, 17] that the local electron-phonon coupling gi can be neglected, while the effect of the

oscillations σ (eq. 5) in the transfer integral values can be accounted for as off-diagonal disorder

in the Hamiltonian. Finally Z =
∑

n e
−En/(kBT ) is the partition function and X is the the position

operator.

L2
x(τ) is related to the diffusion coefficient by[16]:

Dx(t) =
L2
x(τ)

2τ
(11)

Substituting this latter relation in the well-known Einstein-Smoluchowsky equation [19, 20] the

charge mobility µ can be evaluated as:

µx =
e

kBT

L2
x(τ)

2nτ
, (12)

where n is the dimensionality of the system.

As mentioned above, we have focused on equations describing 1-dimensional charge trans-

port; however, in most OSCs, charge migration mainly occurs in the so-called high-mobility plane,
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while the mobility perpendicular to this plane is 1-2 orders of magnitude smaller [6, 21, 22]. Nev-

ertheless, generalization of TLT to 2-dimensional charge transport is trivial [6], since the total

localization length is the sum of the contributions along the two directions, say x and y:

L2(τ) = L2
x(τ) + L2

y(τ). (13)

Computational methods

The crystal structure for the polymorphs studied has been derived from the Cambridge Structural Database

(CSD)[23], except for polymorph III and IV, whose crystallographic data have been reported in ref. 24.

In the following we provide a list of the CSD codes, if any, together with structure information and the

reference to original work.

• Polimorph I, T= 293 K. CSD code= 170186; (a = 6.266 Å, b = 7.775 Å, c = 14.530 Å, α =

76.475, β = 87.682, γ = 84.684); ref. 25

• Polimorph II, T= 293 K. CSD code= 1230799; (a = 6.060 Å, b = 7.900 Å, c = 16.010 Å,

α = 101.90, β = 85.80, γ = 112.60); ref. 26

• Polimorph III, T= 293 K. (a = 5.89 Å, b = 7.70 Å, c = 15.7 Å, α = 77.6, β = 80.3, γ = 88.4);

ref. 24

• Polimorph IV, T= 293 K. (a = 5.77 Å, b = 7.49 Å, c = 17.2 Å, α = 73.5, β = 75.3, γ = 91.2); ref.

24

• Polimorph I, T= 90 K. CSD code= 170187; (a = 6.239 Å, b = 7.636 Å, c = 14.330 Å, α = 76.978,

β = 88.136, γ = 84.415); ref. 25
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• Polimorph I, T= 498 K. CSD code= 619982; (a = 6.123 Å, b = 8.078 Å, c = 15.134 Å, α =

80.802, β = 76.712, γ = 86.042); ref. 27

Electronic structure, normal modes, and vibrational frequencies have been calculated by employing

the self-consistent charge density-functional tight-binding (DFTB) method as implemented in the DFTB+

software package.[28, 29] The DFTB is a semi-empirical tight-binding method where the elements of Hamil-

tonian and overlap matrices are evaluated starting from precomputed values, reducing the computational

time of about 3-4 orders of magnitude with respect to DFT.[29, 30]

In the case of the electronic structure calculations, the elements of the resulting general tight-binding

Hamiltonian matrix are chosen to be self-consistent atomic DFT eigenvalues evaluated with the B3LYP/6-

31g* functional [29], while the off-diagonal elements are calculated in a two-center approximation as is the

case of the employed 3-ob-1 Slater-Koster set parameter [31]. The atomic positions of the unit cell have

been optimized keeping the experimental lattice values fixed, using the conjugate gradient method with

a force-threshold criterion of 10−8 Hartree per Bohr radius. We have used periodic boundary conditions

(PBC) employing a 4 × 4 × 4 Monkhorst-Pack k-point sampling scheme.[32], resorting to the DFTB-D3

formalism [33] to take into account the weakly van der Waals interaction in the crystalline phase.

Since DFTB is known to severely underestimate transfer integrals because of the minimal basis set

used [34–37], they have been evaluated at the B3LYP/3-21g* level of theory as implemented in Gaussian

09 [38]. Since the molecule under study is usually well described at any DFT level [4, 39], we have used

one of the most popular functional choice[39, 40] in conjunction with a basis set that ensures reliable re-

sults at a reasonable computational cost [4]. ∇V has been evaluated by using the finite difference 2-point

approximation, using displacement of ±0.01 Å.
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Lattice phonons have been evaluated as reported in our previous work [4], assuming a strict separation

between intramolecular and intermolecular degrees of freedom. The first are assumed to be equal to the

vibrations of the isolated molecule, while, to describe the intermolecular modes, we have considered the

rigid motion of each molecule surrounded by the neighboring molecules frozen in their equilibrium position

[41–43]. This corresponds to the definition of six rigid displacement modes q1 . . . q6 (three translations

and three rotations in reduced mass coordinates) and to the evaluation of a 6 × 6 Hessian matrix Pij =

∂2E/∂qi∂qj , where E is the total energy of a cluster containing a molecule surrounded by all its neighbors

in van der Waals contact. The eigenvalues of Pij are the square of the frequencies of intermolecular modes

and the corresponding eigenvectors provide a representation of these modes as a linear combination of the

original roto-translational modes q1 . . . q6.
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