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2. Experimental details

2.1 Materials

4TIC and IEICO-4F were purchased from 1-Material Inc. PBDB-T was purchased 

from Luminescence Technology Co. o-dichlor-obenzene (ODCB) and 1,8-

diiodooctane (DIO) were purchased from Sigma-Aldrich Co. MoO3 and Ag were 

purchased from Alfa Aesar Co. The blend of PBDB-T, IEICO-4F and 4TIC (the 

concentration is 25 mg mL-1 in total) was dissolved in ODCB as a function of the ratio 

of IEICO-4F:4TIC and stirred overnight. The ZnO solution was synthesized by the sol-

gel method [1, 2].

2.2 OSCs device preparation and characteristics

Indium–tin-oxide (ITO) glasses were ultrasonicated at 30 °C in isopropyl alcohol, 

acetone and deionized water for 30 min, respectively. The ITO glasses were then dried 

by a stream of nitrogen and heated on the hot-stage. The ZnO solution was spin-coated 

onto the ITO glass and baked at 150 °C for 20 min in air (the thickness of ZnO thin 

films is 20 nm). The blended solution was spin-coated on the ZnO layer in a N2-filled 

glove box to form the photoactive layer, and the thermal annealing treatment was 

carried out (the nominal thickness of ~90 nm). A MoO3 layer and a Ag electrode were 

evaporated under vacuum through a shadow mask to define the active area of the 

devices (33 mm2). The current density versus voltage (J–V) characteristics of OSCs 

were measured in a glove box with a computer-controlled Keithley 236 Source Measure 

Unit under illumination at 100 mW cm-2 using an AM1.5 G solar simulator. The 

external quantum efficiency (EQE) spectrum was measured with a Stanford Research 



Systems model SR830 DSP lock-in amplifier coupled to a WDG3 monochromator and 

a 500 W xenon lamp.

2.3 SCLC device preparation and characteristics

The hole-only space-charge-limited-current (SCLC) devices and electron-only 

SCLC devices were fabricated with the structures of ITO/PEDOT:PSS/PBDB-

T:IEICO-4F:4TIC/Au and Al/PBDB-T:IEICO-4F:4TIC/Al, respectively. The charge 

carrier mobilities were calculated using the equation [3, 4]:
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where J is the current density,  is the charge carrier mobility,  (8.85×10-14  0

F/cm) and  are the permittivity of free space and relative permittivity of the r

material (  was assumed to be 3), respectively, and V is the SCLC effective r

voltage. The charge carrier mobility were calculated using the equation [5]:
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where  is the charge mobility under zero electric field and  is a constant. 0 

Then, the Mott-Gurney equation can be described by [6]: 
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In this case, the charge mobility were estimated using the following equation [6]:
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2.4 XRD calculated and characteristics

The angles at which the peak intensities occur are related to the inter-planar 

distances of the atomic structure of the photoactive layer and the crystallinity of 



photoactive layer; these angles are related by Bragg’s law [7]:

  2 sind

where  is the wavelength of the X-ray radiation used (0.154 nm),  is the peak position 

half-angle, and d is the inter-planar distance.

2.5 Surface energy calculated and characteristics

The surface energy of pristine PBDB-T, IEICO-4F and 4TIC were achieved the 

other paper and summarized at Table S3 [8-10]. The interfacial surface energy between 

different materials in the blend can be calculated using the followed equation:
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Where γ1-2 is the interfacial surface energy between materials 1 and materials 2 and  

is 0.000115 m4/mJ2. The calculated  value of PBDB-T:IEICO-4F, IEICO-4F:4TIC and 

PBDB-T:4TIC binary films are summarized at Table S4. The wetting coefficient (ω) 

of the third component in the binary photoactive layer can be calculated and according 

to the Young’s formula:
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The 4TIC were defined as third component materials. 
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Figure S1. (a) Chemical structures of PBDB-T, IEICO-4F and 4TIC. (b) The energy 
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level of OSCs.

Table S1. Summary of molecular weight, n, l, and Ne values of IEICO-4F and 4TIC.

Electron
Acceptor

Molecular 
Weight (g mol-1)

n
(mol g-1)

l Ne

(mol g-1)
IEICO-4F 2054 2.931020 1 2.9310-3

4TIC 1895 3.181020 1 3.1810-3

Table S2. Summary of VOC, Eg and Eloss values of all the OSCs depending on the ratio 

of IEICO-4F:4TIC.

IEICO-4F
:4TIC

VOC

(V)
Eg

(eV)
Eloss

(eV)
100:0 0.72 1.16 0.44
50:50 0.80 1.22 0.42
55:45 0.81 1.22 0.41
60:40 0.82 1.23 0.41
65:35 0.81 1.23 0.42
70:30 0.83 1.27 0.44
0:100 0.84 1.43 0.59

Figure S2 AFM images of PBDB-T:IEICO-4F:4TIC with ratios of IEICO-4F:4TIC of 

100:0 (a), 60:40 (b), and 0:100 (c).

Table S3 Surface energy of PBDB-T, IEICO-4F and 4TIC.
PBDB-T IEICO-4F 4TIC



Surface energy
(mJ cm-2)

25.25 27.75 32.24

Table S4 Interfacial surface energy between components 1 and 2 in different blends.

PBDB-T
:IEICO-4F

IEICO-4F:
4TIC

PBDB-T
:4TIC

Wettin
g 0.3588 0.1857 0.7463

Table S5 Wetting coefficient of ternary photoactive layer.

Ternary Film
ω -1.56
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Figure S3. XRD curves of PBDB-T:IEICO-4F binary thin films, PBDB-T:IEICO-

4F:4TIC ternary thin films and PBDB-T:4TIC binary thin films.
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Figure S4. J-V characteristics of the OSCs under various light intensities ranging from 

100 mW cm-2 to 5 mW cm-2 with ratios of IEICO-4F:4TIC of 100:0, 60:40 and 0:100 

corresponding to Figure S4(a), S4(b) and S4(c), respectively.
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