Supporting Information

Fig. S1 The *J-V* curves of the optimal ST-PSCs with a 15 nm Ag cathode and different PBDDTT-3TC:ITIC ratios under the illumination of AM1.5G, 100 mW cm⁻². Table S1 Photovoltaic performance parameters of the ST-PSCs with a 15 nm Ag cathode and

	~ 1	1 1100	010100	e pen		puit				<i>.</i>	1000				-0	•••••••••	
differ	ent l	PBDD	OTT-3	TC:IT	IC blen	d ratios	s under	the	illu	mina	ation c	of AM	11.5G	, 100 1	mW	/ cm ⁻² .	

D/A		$J_{\rm sc}$	FF	PCEmax	Active layer
ratios	(V)	(mA cm ⁻²)	(%)	(PCEave)" (%)	tnickness (nm)
1.2:1.0	0.98	11.87	48.57	5.66 (5.51)	105
1.0:1.0	0.99	12.13	51.18	6.15 (6.08)	102
0.8:1.0	0.99	11.85	51.19	6.00 (5.89)	98
0.6:1.0	0.97	10.05	50.95	4.98 (4.71)	101

Table S2 Photovoltaic performance parameters of opaque PSCs based on PBDDTT-3TC:ITIC with 100 nm Ag cathode and about 100 nm in all active layer thickness under the illumination of AM1.5G, 100 mW cm-2.

D/A ratios	V _{oc} (V)	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)	
1.0:1.0	0.99	13.33	52.32	6.92	
1.5:1.0	0.99	11.49	47.56	5.39	
1.0:1.5	0.99	9.91	52.39	5.15	
1.0:1.0 0.5%DIO	1.01	8.81	46.49	4.17	
1.0:1.0 1.0%DIO	0.99	7.57	45.22	3.40	

	1.0:1.0	0.99	10.89	55.12	5.99
	TA (90°C,5 min)				
	1.0:1.0	1.00	10.57	60.07	6.37
	TA (90°C,10 min)				
Ľ	$\int_{O}^{Br} OH \xrightarrow{\sim \sim \sim \sim OH} \int_{O}^{S} OH$	$\mathcal{A}_{0}^{\mathrm{Br}}$	S_{n}' S_{s} $S_{$	NBS	S S S S S S S S S S S S S S S S S S S

The monomers (2 and 3) were prepared based on a previously reported method.¹

5,5"- dibromo-3,3"- dicarboxylic acid ethylhexyl ester - 2,2":5',2"- terthiophene (3TC). In a 50 mL two-neck roundbottom flask, compound 3 (1.24 g, 2.20 mmol) and N-Bromosuccinimide (NBS) (1.178 g, 6.62 mmol) were mixed in 30 mL of chloroform. The solution was stirred overnight in the dark at room temperature. The solution was washed with water, and extracted using dichloromethane and was then dried over anhydrous MgSO4. The organic layer was concentrated by evaporation, and the residue was purified by column chromatography on silica gel to afford product 3TC as a yellow oil (yield 85%).

Fig. S2 ¹HNMR spectrum of compound 3TC.

Fig. S3 TGA plot of PBDDTT-3TC with a heating rate of 10 °C/min under nitrogen.

Fig. S4 photoluminescence spectra of the PBDDTT-3TC and ITIC and PBDDTT-3TC:ITIC blend films with different D/A ratios.

Fig. S5 Transmission spectra of Ag thin films with different thickness.

Fig. S6 photos of the semitransparent device with 15 nm Ag cathode.

Reference

 D. Liu, B. Yang, B. Jang, B. Xu, S. Zhang, C. He, H. Y. Woo and J. Hou, Energy Environ. Sci., 2017, 10, 546-551.