Electronic Supporting Information

Direct Atomic-scale Observation of Ag⁺ Diffusion Structure in the Quasi-2D "Liquidlike" State of Superionic Thermoelectric AgCrSe₂

Lin Xie, Di Wu, Hongliang Yang, Yong Yu, Yifan Wang and Jiaqing He*

Sec. 1: Specific heat ^C_V

We estimated the bulk specific heat C_V from C_P using following equation:^{S1}

$$C_{\rm V} = C_{\rm P} - 9\alpha^2 \rm BVT \tag{S1}$$

where α is the thermal expansion coefficient, B the bulk modulus, V the volume per atom. C_P was determined by the comparative laser flash method and the results were reported elsewhere.^{S2} The thermal expansion coefficient α is taken from Ref. S3 and a value of ~2.0×10⁻⁵ K⁻¹ is used. The bulk modulus B is calculated from the experimental sound speed to be ~57.8 GPa. Given these values, the calculated C_V is shown in **Figure S1** as circles and it follows the Dulong-Petit limit ^{3Nk}_B=0.314 J g⁻¹ K⁻¹ fairly well.

In comparison, we also calculate the theoretical temperature-dependent $^{C_{V}}$ by extrapolating the thermal properties from the ground state within the DFT quasi-harmonic approximation (QHA).^{S4} Note that the contribution owing to order-to-superionic phase transition is not taken into consideration in DFT QHA calculation. The result is presented in Figure S1 as solid line and it is also in good agreement with experiments. It is thus implied that the phonon vibrations and diffusion are virtually decoupled.

Sec. 2: Sound speed measurements

The speed of sound was measured by the ultrasonic pulse-echo approach using an Olympus 5037PR pulse/receiver. The echoes were recorded by a 5 MHz transducer and displayed on a Tektronix MDO3054 digital oscilloscope. The measured sound speed of transverse and longitudinal modes v_T and v_L at room temperatures are 1783.4 m·s⁻¹ and 3651.1 m·s⁻¹, respectively. The mean sound speed $\overline{v_s}$ is calculated by v_T and v_L :

$$\overline{v_s}^3 = \frac{3}{2v_T^{-3} + v_L^{-3}}$$
(S2)

and a value of ~2003.3 m \cdot s⁻¹ can be obtained.

Sec. 3: ^K₁ of disorder solids

According to Ref. S5, the lower limit of κ_1 for a disorder or amorphous solid can be analytical expressed by the following integrals:

$$\kappa_{l,a} = \left(\frac{\pi}{6}\right)^{1/3} k_{B} n^{2/3} \sum_{i} v_{i} \left(\frac{T}{\Theta_{i}}\right)^{2} \int_{0}^{\Theta_{i}/T} \frac{x^{3} e^{x}}{\left(e^{x} - 1\right)^{2}} dx$$
(S3)

where the sum is taken over the two transverse and one longitudinal waves with sound speed v_i ; Θ_i is the Debye temperature for each mode: $\Theta_i = v_i (\hbar/k_B)(6\pi^2 n)^{1/3}$ and n is the number density of atoms. Provided the experimental sound speed and $n=4.8 \times 10^{28} \text{ m}^{-3}$ of AgCrSe₂, the high temperature limit of $\kappa_{l,a}$ (T \rightarrow + ∞) can be calculated as ~0.53 W m⁻¹ K⁻¹.

Sec. 4: Relaxation time τ of diffusion and the critical temperature T_{cr} for TA phonon suppression

The relaxation time τ of ion diffusion in solids usually obeys Arrhenius relation [Equation (3)]. The prefactor, or the attempt frequency τ_0^{-1} for the diffusion in monatomic or cubic crystals was studied theoretically based on lattice dynamics.^{86, S7} It was shown that τ_0^{-1} can be related

to average Debye frequency cutoff $\omega_{\rm D}$ in a simple way, e.g. $\tau_0^{-1} = \left(\frac{3}{5}\right)^{\frac{1}{2}} \omega_{\rm D}$ for monatomic crystals and $\tau_0^{-1} \approx 0.65 \omega_{\rm D}$ for cubic crystals. This limit of τ_0^{-1} is simply because diffusive motion is thermally activated and its frequency cannot exceed the maximum allowed frequency of the whole system. Rice *et al.* calculated τ_0^{-1} for a number of monatomic crystals, e.g. Cu, Ag, Au, Al and found that there is a remarkable agreement between τ_0^{-1} and $\omega_{\rm D}$: $\tau_0^{-1} \approx \omega_{\rm D}$.^{S8} Hence, we relate τ_0^{-1} and $\omega_{\rm D}$ in a simple way that $\tau_0^{-1} = s\omega_{\rm D}$ and s is a variable that depends on atom configurations and crystal structures. For AgCrSe₂, the average Debye frequency is determined to be ~2.49 THz by the average sound speed $\overline{v}_{\rm s}$ ~2003.3 m·s⁻¹. If s = 1, we have τ_0 =0.4 ps.

Alternatively, it was proposed that τ_0^{-1} could also be obtained by the activation energy $E_{a:S^8}$

$$\tau_{0}^{-1} = \frac{1}{a_{0}} \sqrt{2E_{a}/M}$$
(S4)

where a_0 is the hopping distance and M the ionic mass. Using the reported E_a value ~0.11 eV^{S9} and a hopping distance ${}^{a_0}=2.2$ Å between α - and β -sites, ${}^{\tau_0}$ of Ag⁺ ions is calculated to be ~0.5 ps, which is in perfect agreement with the estimation by ${}^{\tau_0^{-1}}=\omega_D$. It's interesting to remark that ${}^{\tau_0^{-1}}$ is usually at the high frequency end of ${}^{\omega_D}$ or the phonon spectrum, which implies that diffusion is mainly driven by the high energy optical phonon modes. As a result, a strong coupling between diffusion and optical phonon might occur and should be easily identified in phonon dispersion or density of states. In fact, it was found that specific phonon modes dominated by Cu ions break down in the isostructure system CuCrSe₂ due to diffusion.^{S10}

Although the diffusion is mainly driven by optical phonon, its frequency is not practically high enough to effectively suppress the low energy phonon modes. Only at extremely high temperature, the relaxation time τ for diffusive motion approaches τ_0 and it is expected that at certain critical temperature T_{cr} diffusion would compete with the low-lying TA phonon modes. T_{cr} can be directly calculated by Equation (5), which corresponds to $\omega_{TA}\tau_c = 1$. The most straightforward way to reduce T_{cr} is to reduce E_a . Another possible means to reduce T_{cr} is to increase ω_{D}/ω_{TA} . We can rewrite ω_{D}/ω_{TA} by the expression of ω_{D} :

$$\frac{\omega_{\rm D}}{\omega_{\rm TA}} = \frac{v_{\rm s}}{\omega_{\rm TA}} (6\pi^2 n)^{1/3}$$
(S5)

For simplicity, it is assumed that $\omega_{TA} = k_{ZB}v_T$, where k_{ZB} is the maximum wave vector at the zone boundary. Inserting Equation (S2) and the relation $\omega_{TA} = k_{ZB}v_T$ back into Equation (S5), we now have

$$\frac{\omega_{\rm D}}{\omega_{\rm TA}} = \frac{(6\pi^2 n)^{1/3}}{k_{\rm ZB}} \left[\frac{3}{2 + (v_{\rm T}/v_{\rm L})^3} \right]^{1/3}$$
(S6)

Thus, ${}^{\omega_D/\omega_{TA}}$ is approximately proportional to the cell size (${}^{-1/k_{ZB}}$) and it's predicted that larger system will have smaller ${}^{T}{}_{cr}$. A smaller ${}^{v_T/v_L}$ ratio could also potentially increase ${}^{\omega_D/\omega_{TA}}$ but its effect is relatively weaker. A search for such materials and understanding the possible strong coupling between diffusion, low energy acoustic phonon and high energy optical phonon in these systems will be the scope of our future work.

References

S1 O. Delaire, A. F. May, M. A. McGuire, W. D. Porter, M. S. Lucas, M. B. Stone, D. L. Abernathy, V. A. Ravi, S. A. Firdosy and G. J. Snyder, *Phys. Rev. B*, 2009, 80, 184302.
S2 D. Wu, S. Z. Huang, D. Feng, B. Li, Y. X. Chen, J. Zhang and J. Q. He, *Phys. Chem. Chem. Phys.*, 2016, 18, 23872.

S3 Li B, H. Wang, Y. Kawakita, Q. Zhang, M. Feygenson, H. L. Yu, D. Wu, K. Ohara, T. Kikuchi, K. Shibata, T. Yamada, X. K. Ning, Y. Chen, J. Q. He, D. Vaknin, R. Q. Wu, K. Nakajima and M. G. Kanatzidis, *Nat. Mater.*, 2018, **17**, 226.

- S4 A. Togo and I. Tanaka, Scr. Mater., 2015, 108, 1.
- S5 D. G. Cahill, S. K. Watson and R. O. Pohl, Phys. Rev. B, 1992, 46, 6131.
- S6 C. P. Flynn, Phys. Rev., 1968, 171, 682.
- S7 B. N. N. Achar, Phys. Rev. B, 1970, 2, 3848.
- S8 M. J. Rice and W. L. Roth, J. Sol. Stat. Chem., 1972, 4, 294.
- S9 D. W. Murphy, H. S. Chen and B. Tell, J. Electrochem. Soc., 1977, 124, 1268.
- S10 J. L. Niedziela, D. Bansal, A. F. May, J. X. Ding, T. Lanigan-Atkins, G. Ehlers, D. L.

Abernathy, A. Said and O. Delaire, Nat. Phys., 2019, 15, 73.

Figure S1. Experimental (circles)^{S2} and calculated (solid line) specific heat $^{C_{V}}$. Both values are close to the Dulong-Petit limit $^{3Nk_{B}=0.314}$ J g⁻¹ K⁻¹ (dash line).