Supporting Information

Molecular Modulator for Stable Inverted Planar Perovskite Solar Cells

with Efficiency Enhanced by Interface Engineering

Z. Q. Zhao, ^{*a†} S. You, ^{a†} J. Huang, ^a L. Yuan, ^a Z. Y. Xiao, ^a Y. Cao, ^a N. Cheng, ^a L. Hu, ^b J. F. Liu, ^a and B. H. Yu^{*a}

^{a.} Energy-Saving Building Materials Collaborative Innovation Center of Henan Province, Xinyang Normal University, Xinyang, Henan, 464000, P. R. China.

E-mail: zqzhao@xynu.edu.cn, hnyubenhai@163.com.

^{b.}Australia Centre for Advanced Photovoltaics, University of New South Wales, Sydney, Australia.

[†] These authors contributed equally to this work.

Figure S1. The surface SEM image (a) and XRD patterns (b) of MAPbI3 on ITO substrate;surface SEM image(c) and XRD patterns (d) of $FA_{0.85}MA_{0.15}Pb(I_{0.85}Br_{0.15})_3$ on ITO substrate(scalebars:1 μ m).

Figure S2. Typical J-V curves of perovskite solar cells with different concentration of Ca(acac)₂. The measurements were carried out under AM 1.5 illumination at an irradiation intensity of 100 mW \cdot cm⁻² (MAPbI₃-based PSCs)

Figure S3. J-V curves under the AM 1.5 G simulated sunlight illumination (100 mW · cm⁻²) for the inverted planar perovskite solar cells with and without Ca(acac)₂ interfacial layer (FA_{0.85}MA_{0.15}Pb(I_{0.85}Br_{0.15})₃-based PSCs).

Table S1. Photovoltaic parameters of the perovskite solar cells with different $Ca(acac)_2$ concentration (MAPbI₃-based PSCs).

Sample	$V_{oc}(V)$	J_{sc} (mA·cm ⁻²)	FF (%)	PCE (%)
0 mg/ml	1.02	21.49	66.29	14.53
0.01 mg/ml	1.03	22.37	70.19	16.17
0.05 mg/ml	1.03	22.69	74.68	17.45
0.1 mg/ml	1.04	23.02	75.95	18.23
0.3 mg/ml	1.03	22.76	74.73	17.52
0.5 mg/ml	1.02	22.13	72.91	16.46

Scan direction	V _{oc} (V)	J_{sc} (mA·cm ⁻²)	FF (%)	PCE (%)
PCBM/Ag (Forward)	0.98	21.11	60.03	12.42
PCBM/Ag (Reverse)	1.02	21.49	66.29	14.53
PCBM/Ca(acac) ₂ /Ag (Forward)	1.04	22.76	76.75	18.16
PCBM/Ca(acac) ₂ /Ag (Reverse)	1.04	23.02	75.95	18.23

Table S2. Photovoltaic parameters of the best PSCs without and with $Ca(acac)_2$ ETLs in different scan directions (MAPbI₃-based PSCs)

Figure S4. a) Surface potential profiles (V_{sp}) extracted from the SKPM images; b) UPS spectra of the pure PCBM and Ca(acac)₂ coated PCBM films. The work function of PCBM was reduced after Ca(acac)₂ modification.

Figure S5. Contact angles of water on PCBM (a) and PCBM/Ca(acac)₂ (b) films.

Figure S6. Typical J-V curves of perovskite solar cells with different concentration of BCP. The measurements were carried out under AM 1.5 illumination at an irradiation intensity of 100 mW•cm⁻² (MAPbI₃-based PSCs)

Table S3. Photovoltaic parameters of the perovskite solar cells with different BCP concentration (MAPbI₃-based PSCs).

Sample	$V_{oc}(V)$	J _{sc} (mA·cm ⁻²)	FF (%)	PCE (%)
0 mg/ml	1.02	22.24	62.8	14.24
0.01 mg/ml	1.05	22.20	61.2	14.26
0.05 mg/ml	1.07	22.43	63.5	15.24
0.1 mg/ml	1.06	22.84	61.1	14.79
0.3 mg/ml	1.03	22.18	56.7	12.95
0.5 mg/ml	0. 997	22.05	61.2	13.45

Figure S7. Typical J-V curves of perovskite solar cells with different concentration of Zr(acac)₂. The measurements were carried out under AM 1.5 illumination at an irradiation intensity of 100 mW•cm⁻² (MAPbI₃-based PSCs)

Sample	$V_{oc}(V)$	J_{sc} (mA·cm ⁻²)	FF (%)	PCE (%)
0 mg/ml	1.027	21.75	68.40	15.27
0.01 mg/ml	1.033	22.24	71.80	16.49
0.05 mg/ml	1.038	22.78	72.20	17.07
0.1 mg/ml	1.040	23.32	74.10	17.97
0.3 mg/ml	1.040	22.89	72.31	17.21
0.5 mg/ml	1.025	22.74	72.36	16.86

Table S4. Photovoltaic parameters of the perovskite solar cells with different $Zr(acac)_2$ concentration (MAPbI₃-based PSCs).

Figure S8. Steady photocurrent and PCE output at a fixed bias voltage of its initial maximal power point of each champion device (MAPbI₃-based PSCs).

The steady-state power output for the control and also for the best device with $Ca(acac)_2$ as cathode interfacial layers (CILs). The voltage for the devices without and with $Ca(acac)_2$ are 0.78 V and 0.85 V, respectively, the maximum current density are 18.60 mA/cm² and 21.2 mA/cm², respectively, and the steady-state output are 14.51 % and 18.02% for control and Ca(acac)_2 as CILs devices, respectively.

Figure S9. For $FA_{0.85}MA_{0.15}Pb(I_{0.85}Br_{0.15})_3$.-based PSC devices: Histogram of solar cell efficiencies of the control and Ca(acac)₂-modified PSCs (30 devices, respectively).