Supporting Information

Ultrastrong and highly conductive MXene/cellulose nanofiber films with hierarchical nano-architecture for flexible high-performance electromagnetic interference shielding

Zeying Zhan, Quancheng Song, Zehang Zhou* and Canhui Lu*

State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China.

Corresponding Author

* Corresponding author: zzh303@scu.edu.cn (Zehang Zhou), canhuilu@scu.edu.cn (Canhui Lu).

Figure S1 - Zeta potential patterns of TOCNF, $Ti_3C_2T_x$ and $Ti_3C_2T_x/TOCNF$ suspensions. The Zeta Potential peats of TOCNF, $Ti_3C_2T_x$ and $Ti_3C_2T_x/TOCNF$ are -45.9 mV, -33.0 mV, -36.4 mV, respectively.

Figure S2 - (a) Schematic illustration of the synthesis procedure of the TOCNFs. (b) The TEM images of TOCNFs. (c) TEM image of as-prepared $Ti_3C_2T_x$ nanoflakes.

Figure S3 - FTIR spectra of Ti_3AlC_2 and $Ti_3C_2T_x$. It is clear that extensive oxygen-containing functional gourps were deposited after etching.

Figure S4 - SEM image of the surface of $Ti_3C_2T_x/TOCNF$ composite paper.

Ti ₃ C ₂ T _x content (wt%)	Thickness (µm)	Young's modulus (GPa)	Tensile strength (MPa)	Strain of failure (%)	Toughness (MJ/m ³)
100	16	1.9	12.8	0.7	0.1
50	38	7.0	141.9	2.1	1.7
40	35	5.9	212.2	4.3	5.5
30	33	6.2	196.1	3.6	4.1
20	31	6.1	177.8	3.2	3.4
10	27	5.5	171.5	5.3	6.1
0	28	5.8	171.1	8.0	10.1

Table S1. Mechanical properties of $Ti_3C_2T_x$, TOCNF and $Ti_3C_2T_x$ /TOCNF composite paper.

Flexible electrodes	Young's modulus (%)	Tensile strength (MPa)	References
PAni/BC	2.7	16	1
GO/BC	1.7	242	2
RGO/CNF/RGO	4.8	91	3
Ammonia-			
functionalized	2.9	82	4
GO/CNF			
Ammonia-			
functionalized	3.4	88	4
GO/TOCNF			
Ti ₃ C ₂ T _x /PVA	3.7	91	5
Ti ₃ C ₂ T _x /PBI	0.9	30	6
Ti ₃ C ₂ T _x /BC	0.6	43	7
Ti ₃ C ₂ T _x /UHMWPE	7.5	39	8
$Ti_3C_2T_x$	1.9	12.8	This work
Ti ₃ C ₂ T _x /TOCNF	7.0	212	This work

Table S2. Comparison of the mechanical properties of different flexible supercapacitor paper

electrodes with $Ti_3C_2T_x/CNF$ composite paper.

Ti ₃ C ₂ T _x content (wt%)	Thickness (µm)	Conductivity (S/m)
100	16	4432
50	38	2837
40	35	1212
30	33	30.4
20	31	2.1
10	27	0.3
0	28	0

Table S3. Electrical properties of $Ti_3C_2T_x$, TOCNF and $Ti_3C_2T_x$ /TOCNF composite paper.

Sample	Thickness	SE	SSE/t,	Reference
	(µm)	(dB)	(dB cm ² g ⁻¹)	
Carbon foam	200	~40	1250	9
CNT sponge	240	~20	4622	10
CNF mat	290	~52.2	1362	11
CNT/Graphene	1000	26-28	2143	12
CNTs/PC	2100	~39	164	13
MWCNTs/PS	2000	~30	285	14
SWCNTs/PS	1200	~18.5	275	15
Graphene/PS	2000	~29	258	16
Graphene/PMMA	2400	~19	100	17
Graphene/PI	800	17-21	848	18
	47	24	2647	
Ti ₃ C ₂ T _x / CNF	74	26	2154	19
	167	25	1326	
Ti ₃ C ₂ T _x / TOCNF-50	47	~32.7	4761	This work

Table S4. Comparison of EMI shielding performance of the $Ti_3C_2T_x/TOCNF$ composite films versus other materials.

References

- 1 J. A. Marins, B. G. Soares, M. Fraga, D. Müller and G. Barra, Cellulose, 2014, 21, 1409-1418.
- 2 Y. Feng, X. Zhang, Y. Shen, K. Yoshino and W. Feng, Carbohyd. Polym., 2012, 87, 644-649.
- 3 M. Hou, M. J. Xu, and B. Li, ACS Sustainable Chem. Eng., 2018, 6, 2983-2990.
- 4 Y. B. Pottathara, V. Bobnar, S. Gorgieva, Y. Grohens and V. Kokol, RSC Adv., 2016, 6, 49138-49149.
- 5 Z. Ling, C. E. Ren, M. Q. Zhao, J. Yang, J. M. Giammarco, J. S. Qiu, M. W. Barsoum, and Y. Gogotsi, *P. Natl. Acad. Sci. USA*, 2014, **111**, 16676.
- 6 M. Fei, R. Lin, Y. D, H. Xian, R. B, X. Zhang, J. Cheng, C. Xu and D. Cai, *Nanotechnology*, 2018, 29, 035403.
- 7 Y. Wang, X. Wang, X. Li, Y. Bai, H. Xiao, Y. Liu, R. Liu and G. Yuan, Adv. Funct. Mater., 2019, 29, 1900326.
- 8 H. Zhang, L. Wang, Q. Chen, P. Li, A. Zhou, X. Cao, Q. Hu, Mater. Des., 2016, 92, 682-689.
- 9 F. Moglie, D. Micheli, S. Laurenzi, M. Marchetti and V. M. Primiani, Carbon, 2012, 50, 1972-1980.
- 10 M. Crespo, M. Gonzalez, A. L. Elias, L. P. Rajukumar, J. Baselga, M. Terrones and J. Pozuelo, *Phys. Status Solidi-R*, 2014, **8**, 698-704.
- 11 X. H. Hong and D. D. L. Chung, Carbon, 2017, 111, 529-537.
- 12 W. L. Song, J. Wang, L. Z. Fan, Y. Li, C. Y. Wang and M. S. Cao, ACS. Appl. Mater. Interfaces, 2014, 6, 10516-10523.
- 13 S. Pande, A. Chaudhary, D. Patel, B. P. Singh and R. B. Mathur, RSC Adv., 2014, 4, 13839-13849.
- 14 M. Arjmand, T. Apperley, M. Okoniewski and U. Sundararaj, Carbon, 2012, 50, 5126-5134.
- 15 Y. L. Yang and M. C. Gupta, Nano Lett., 2005, 5, 2131-2134.
- 16 D. X. Yan, P. G. Ren, H. Pang, Q. Fu, M. B. Yang and Z. M. Li, J. Mater. Chem., 2012, 22, 18772-18774.
- 17 H. B. Zhang, Q. Yan, W. G. Zheng, Z. X. He and Z. Z. Yu, ACS Appl. Mater. Interfaces, 2011, 3, 918-924.
- 18 Y. Li, X. L. Pei, B. Shen, W. T. Zhai, L. H. Zhang and W. G. Zheng, RSC Adv., 2015, 5, 24342-24351.
- 19 W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang, Y. Y. Jiang, M. G. Ma and F. Chen, ACS Nano, 2018, 12, 4583-4593.