Supporting Information

Eu-MOF/EDTA-NiAl-CLDH fluorescent micromotors for sensing and removal of Fe³⁺ from water

Wenning Yang, Jia Li*, Zhipeng Xu, Jie Yang, Yong Liu, Lihua Liu

School of Material Science and Engineering, University of Jinan, Jinan, China

This file includes Videos S1-S3, Fig.S1 and Tables S1-S2.

Video S1. Motion of Eu-MOF/EDTA-NiAl-CLDH-M in 5 wt.% H₂O₂ and 0.5 wt.% SDS.

Video S2. Motion of Eu-MOF/EDTA-NiAl-CLDH-M in 3 wt.% H₂O₂ and 0.5 wt.% SDS.

Video S3. Motion of Eu-MOF/EDTA-NiAl-CLDH-M in 1 wt.% H₂O₂ and 0.5 wt.% SDS.

Fig. S1 XRD patterns of AlOOH and NiAl-LDH.

Table S1. The BET surface area and pore structure parameters.

Table S2. Parameters of kinetic models.

Fig. S1. XRD patterns of AlOOH and NiAl-LDH.

Table S1. The BET surface area and pore structure parameters of the as-synthesized samples.^a

Sample	$S_{BET} \left(m^2 \cdot g^{-1}\right)$	$V_{Total} (cm^3 \cdot g^{-1})$	D _p (nm)
Eu-MOF/EDTA-NiAl-CLDH-M	131.33	0.29	8.97
EDTA-NiAl-CLDH/MnO ₂	64.15	0.14	12.12

 $^aS_{BET}:$ BET specific surface area; $V_{\text{Total}}:$ total pore volume; Dp: average pore diameter.

^{*} Corresponding authors at: School of Material Science and Engineering, University of Jinan, Jinan, 250022, China. *E-mail address:* mse_lij@ujn.edu.cn (J. Li).

Kinetic models and adsorption isotherms

The pseudo-first-order kinetic model was given as Eq. S1:1

$$\ln\left(q_e - q_t\right) = \ln q_e - K_1 t \tag{1}$$

where q_e and q_t (mg·g⁻¹) are the Fe³⁺ adsorbed amounts at equilibrium and at any time *t* (h), respectively, and K_1 (h⁻¹) is the adsorption rate constant of pseudo-first-order equation. The pseudo-second-order was expressed by the following equation Eq. S2:¹

$$\frac{t}{q_t} = \frac{1}{K_2 q_e^2} + \frac{1}{q_e} t$$
(2)

where q_e is the amount of Fe³⁺ adsorbed at equilibrium, and K_2 is the rate constant of the pseudosecond-order model. The K_2 , q_e and correlation coefficient R^2 are determined by plotting t/q_t against *t*.

The Langmuir isotherm equation was given by Eq. S3:²

$$\frac{C_e}{q_e} = \frac{1}{q_{max}K_L} + \frac{C_e}{q_{max}}$$
(3)

where C_e (mg/L) is the equilibrium concentration of Fe³⁺, and q_e (mg·g⁻¹) is the equilibrium adsorption capacity, q_{max} (mg·g⁻¹) refers to maximum adsorption capacity. K_L represents the Langmuir constant. A straight line with a slope of $1/q_{max}$ and an intercept of $1/q_{max}K_L$ can be obtained when C_e/q_e is plotted against C_e . The Freundlich isotherm is derived by assuming a heterogeneous surface with a non-uniform distribution of heat of sorption over the surface. The well-known logarithmic form of the Freundlich model was given by Eq. S4:²

$$lnq_e = lnK_F + \frac{1}{n}lnC_e \tag{4}$$

where K_F and *n* are Freundlich constants related to adsorption capacity and adsorption intensity, respectively. The plot of ln q_e versus ln C_e gives a straight line with a slope of 1/n and an intercept of ln K_F . The constants of *n* and K_F are determined by plotting ln q_e versus ln C_e .

Kinetic model	Parameter	Eu-MOF/EDTA-	Eu-MOF/EDTA-	Eu-MOF/	Eu-MOF/
		NiAl-CLDH-M	NiAl-CLDH-N	NiAl-CLDH-M	NiAl-CLDH-N
Pseudo-first-order	$q_e(\mathrm{mg}\cdot\mathrm{g}^{-1}) \exp$.	78.73	55.25	22.30	14.26
	$q_e (\mathrm{mg} \cdot \mathrm{g}^{-1}) \mathrm{model}$	55.40	38.21	9.54	5.74
	$K_{l}(h^{-1})$	0.5574	0.5728	0.5483	0.3874
	R^2	0.9550	0.9492	0.9610	0.9572

Table S2 Parameters of kinetic models.

Pseudo-second-order	$q_e (\mathrm{mg} \cdot \mathrm{g}^{-1}) \mathrm{model}$	81.24	56.72	23.01	14.51
	$K_2(\mathrm{mg}\cdot\mathrm{g}^{-1}\cdot\mathrm{h}^{-1})$	0.0310	0.0491	0.0019	0.0047
	R^2	0.9959	0.9959	0.9998	0.9974
Langmuir	$K_L(L \cdot mg^{-1})$	0.1158	0.0957	0.0534	0.0281
	$q_{max}(\mathrm{mg}\cdot\mathrm{g}^{-1})$	111.98	95.60	55.56	41.67
	R^2	0.9948	0.9924	0.9582	0.9666
Freundlich	$K_F(\mathrm{L}\cdot\mathrm{mg}^{-1})$	23.4995	19.3988	8.1481	4.8790
	п	2.56	2.63	2.48	2.48
	R^2	0.9051	0.9481	0.7957	0.9241

References

1 F. Ji, J. Li, X.L. Cui, J.Liu, X.M. Bing, Appl. Clay Sci., 2018, 162, 182-191.

2 J. Li, N. Zhang, D.H.L. Ng, J. Mater. Chem. A, 2015, 3, 21106-21115.