Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Microporous mixed-metal (Na/Cu) mixed-ligand (flexible/rigid) metal–organic framework for photocatalytic H₂ generation

Dongying Shi,* Chao-Jie Cui, Min Hu, A-Hao Ren, Lu-Bin Song, Chun-Sen Liu* and Miao Du*

Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China

Author for correspondence: shidongying@zzuli.edu.cn; chunsenliu@zzuli.edu.cn;

dumiao@zzuli.edu.cn

- Section S1 Photocatalytic Activity of Typical MOFs for H₂ Production
- Section S2 Characterization of Na/Cu–MOF
- Section S3 Characterization of Cu–MOF
- Section S4 Photocatalytic Experiments
- Section S5 References

Section S1 Photocatalytic Activity of Typical MOFs for H₂ Production

Entry	MOFs	Metal	Additional	Light	Photocatalytic
		Node	Loaded Catalysts	Source	Activity
1	Na/Cu–MOF	Na/Cu	No	visible	4650 µmol∙g-
	(this work)			light	¹ ⋅ h ⁻¹
2	Al-PMOF ¹	Al	Pt	visible	$200 \ \mu mol \cdot g^{-1} \cdot h^{-1}$
				light	1
2	MOF-253-Pt ²	Al	Pt	visible	100–200
3				light	$\mu mol \cdot g^{-1} \cdot h^{-1}$
4	CdS/MIL-101 ³	Cr	Pt	visible	14.1
				light	$mmol \cdot g_{CdS}^{-1} \cdot h^{-1}$
5	Pt/NH ₂ -MIL-101 ⁴	Cr	Pt	visible	110
				light	$mol_{H2} \cdot mol_{cat}^{-1}$
6	Pt@UiO-66 ⁵	Zr	Pt	visible	116 μmol·g ⁻¹ ·h ⁻
				light	1
-	UiO-66- [FeFe](dcbdt)(CO) ₆ ⁶	Zr	[FeFe](bdt)(CO) ₆	LED	3.5 umol/5 mg
/					s.e pinor e mg
8	Pt@MOF ⁷	Zr	Pt	visible	3400-7000
				light	mol/48 h
9	POM@UiO ⁸	Zr	[P ₂ W ₁₈ O ₆₂] ⁶⁻	visible	699 μ mol·h ⁻¹ ·g ⁻
				light	1
10	Ru–Pt@UIO-67 ⁹	Zr	Pt(dcbpy)Cl ₂ + [Ru(dcbpy)(bpy) ₂] ²⁺		0.55 μmol/(1.47
					mmol Pt
				LED	complex and
					0.42 mmol Ru
					complex)
11	Pt/Ti-MOF-NH ₂ ¹⁰	Ti	Pt	visible	3.67 µmol/10
				light	mg∙h ^{−1}
12	Pt@CdS/UiO-66 ¹¹	Zr	Pt	visible	47 μmol⋅mg ⁻
				light	¹ ·h ⁻¹
13	Calix-3/Pt@UiO-66- NH2 ¹²	Zr	Pt, Calix-3	visible	1528 μmol·g-
				light	¹ ·h ⁻¹
14	$ErB + Pt@UiO-66^{13}$	Zr	Pt	visible	4.6 μmol/10

Table S1Photocatalytic activity of some typical MOF-based and MOF-derived catalysts for H2

production.

				light	mg·h ⁻¹
15	CdS + RGO@UiO- 66 ¹⁴	Zr	RGO	visible	105 µmol/50
				light	$mg \cdot h^{-1}$
16	g-C ₃ N ₄ @UiO-66 ¹⁵	Zr	Pt	visible	14.11 μmol/10
				light	$mg \cdot h^{-1}$
17	[FeFe]@ZrPF ¹⁶	Zr	[Fe ₂ S ₂]	visible	3.5 μmol/2 μM
				light	
18	Pt@UiO-66-NH2 ¹⁷	Zr	Pt	UV	2.8 mL for 3 h
				light	45 mg
19	Pt/Ti-MOF-NH2 ¹⁸	Ti	Pt	visible	15.5 μmol/10
				light	mg
20	Co@NH ₂ -MIL- 125 ¹⁹	Ti	Co-dioxime-diimine	visible	TOF of 0.8 h ⁻¹
				light	for 65 h
21	$[Ru_2(p-BDC)_2]_n^{20}$	Ru	MV ²⁺	visible	TON of 8.16 h ⁻¹
				light	
22	$[Ni_2(PymS)_4]_n^{21}$	Ni	No	LED	6 μmol∙mg ⁻¹
23	Ni@MOF-5 ²²	Zn	Eosin Y, Ni	visible	30.22 μmol·g ⁻
				light	${}^{1} \cdot h^{-1}$
24	rGO–PDI-Co ²³	Со	rGO	visible	225 μ mol \cdot g ⁻¹ ·h ⁻
				light	1
25	$[Cu^{II}(RSH)(H_2O)]_n^{24}$	Cu	No	visible	7.88 mmol·g ⁻
				light	$^{1} \cdot h^{-1}$
26	$\{[Cu^{I}Cu^{II}_{2}(DCTP)_{2}]$	Cu	Pt	visible	$32 \ \mu mol \cdot g^{-1} \cdot h^{-1}$
	$NO_3 \cdot 1.5DMF_n^{25}$			light	
27	Cu-I-bpy ²⁶	Cu	No	UV	7.09 mmol·g-
				light	$^{1} \cdot h^{-1}$
28	Ni ₄ P ₂ @MOF ²⁷	Zr	[Ni ₄ (H ₂ O) ₂ (PW ₉ O ₃₄) ₂] ¹⁰⁻	visible	TON of 1476
				light	for 72 h
29	ZZULI-1 ²⁸	Cu	$[W_{12}O_{40}]^{8-} + [W_6O_{19}]^{2-}$	visible	6.61 mmol·g-
				light	$^{1} \cdot h^{-1}$
30	CdS@NU-1000 ²⁹	Zr	Pt	visible	1870 µmol·g-
				light	$^{1} \cdot h^{-1}$
31	Al-TCPP-0.1Pt ³⁰	Al	Pt	visible	129 μmol·g ⁻¹ ·h ⁻
				light	1

Section S2 Characterization of Na/Cu-MOF

Fig. S1 The coordinate environment of Na(I) ions in Na/Cu–MOF.

Fig. S2 The coordinate environment of L_1 ligands in Na/Cu–MOF.

Fig. S3 The coordinate environment of L_2 ligands in Na/Cu–MOF.

Fig. S4 The 2D bilayer grids of Na/Cu–MOF, which are connected by L_1 and L_2 ligands as well as binuclear { Cu_2 } units.

Fig. S5 The TGA curve of Na/Cu–MOF under flowing nitrogen atmosphere.

Fig. S6 The IR spectrum of Na/Cu–MOF.

Fig. S7 The emission spectrum of Na/Cu–MOF (EX = 352 nm).

Fig. S8 The cyclic voltammogram of **Na/Cu–MOF** in KOH aqueous solutions at pH = 13.0. Conditions: platinum counter electrode, carbon paste working electrode, and Ag/AgCl reference

electrode.

Fig. S9 PXRD patterns of Na/Cu–MOF after immersing in HCl/KOH aqueous solutions of different pH for 12 hours.

Fig. S10 The diffuse reflectance spectra of Na/Cu–MOF, L_1 and L_2 .

Section S3 Characterization of Cu-MOF

Fig. S11 The TGA curve of Cu–MOF under flowing nitrogen atmosphere.

Fig. S12 The IR spectrum of Cu–MOF.

Fig. S13 The PXRD patterns of Cu–MOF.

Fig. S14 Photocatalytic H_2 generation with various volume ratio of EtOH/ H_2O .

Fig. S15 Photocatalytic H₂ generation at different pH values.

Fig. S16 Photocatalytic H₂ generation with various TEA concentrations.

Fig. S17 Photocatalytic H₂ generation with various mass of fluorescein.

Fig. S18 Photocatalytic H₂ generation with various mass of Na/Cu–MOF.

Section S5 References

- 1 A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent and M. J. Rosseinsky, *Angew. Chem. Int. Ed.*, 2012, **51**, 7440–7444.
- 2 T. Zhou, Y. Du, A. Borgna, J. Hong, Y. Wang, J. Han, W. Zhang and R. Xu, *Energy Environ*. *Sci.*, 2013, 6, 3229–3234.
- J. He, Z. Yan, J. Wang, J. Xie, L. Jiang, Y. Shi, F. Yuan, F. Yu and Y. Sun, *Chem. Commun.*, 2013, 49, 6761–6763.
- 4 M. Wen, K. Mori, T. Kamegawa and H. Yamashita, *Chem. Commun.*, 2014, **50**, 11645–11648.
- J. He, J. Wang, Y. Chen, J. Zhang, D. Duan, Y. Wang and Z. Yan, *Chem. Commun.*, 2014, 50, 7063–7066.
- S. Pullen, H. Fei, A. Orthaber, S. M. Cohen and S. Ott, J. Am. Chem. Soc., 2013, 135, 16997– 17003.
- 7 C. Wang, K. E. deKrafft and W. Lin, J. Am. Chem. Soc., 2012, 134, 7211–7214.
- Z.-M. Zhang, T. Zhang, C. Wang, Z. Lin, L.-S. Long and W.-B. Lin, *J. Am. Chem. Soc.*, 2015, 137, 3197–3200.
- 9 C.-C. Hou, T.-T. Li, S. Cao, Y. Chen and W.-F. Fu, J. Mater. Chem. A, 2015, 3, 10386–10394.
- Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo and M. Matsuoka, J. Phys. Chem. C, 2012, 116, 20848–20853.
- J.-J. Zhou, R. Wang, X.-L. Liu, F.-M. Peng, C.-H. Li, F. Teng and Y.-P. Yuan, *Appl. Surf. Sci.*, 2015, **346**, 278–283.
- 12 Y.-F. Chen, L.-L. Tan, J.-M. Liu, S. Qin, Z.-Q. Xie, J.-F. Huang, Y.-W. Xu, L.-M. Xiao and C.-Y. Su, *Appl. Catal. B-Environ.*, 2017, **206**, 426–433.
- Y.-P. Yuan, L.-S. Yin, S.-W. Cao, G.-S. Xu, C.-H. Li and C. Xue, *Appl. Catal. B-Environ.*, 2015, 168-169, 572–576.
- R. Lin, L. Shen, Z. Ren, W. Wu, Y. Tan, H. Fu, J. Zhang and L. Wu, *Chem. Commun.*, 2014, 50, 8533–8535.

- R. Wang, L. Gu, J. Zhou, X. Liu, F. Teng, C. Li, Y. Shen and Y. Yuan, *Adv. Mater. Interfaces*, 2015, 2, 1500037.
- 16 K. Sasan, Q. Lin, C. Mao and P. Feng, Chem. Commun., 2014, 50, 10390–10393.
- 17 C. G. Silva, I. Luz, F. X. L. Xamena, A. Corma and H. García, *Chem. Eur. J.*, 2010, 16, 11133–11138.
- 18 T. Toyao, M. Saito, Y. Horiuchi, K. Mochizuki, M. Iwata, H. Higashimura and M. Matsuoka, *Catal. Sci. Technol.*, 2013, 3, 2092–2097.
- M. A. Nasalevich, R. Becker, E. V. Ramos-Fernandez, S. Castellanos, S. L. Veber, M. V. Fedin,
 F. Kapteijn, J. N. H. Reek, J. I. van der Vlugt and J. Gascon, *Energy Environ. Sci.*, 2015, 8, 364–375.
- 20 Y. Kataoka, K. Sato, Y. Miyazaki, K. Masuda, H. Tanaka, S. Naito and W. Mori, *Energy Environ. Sci.*, 2009, 2, 397–400.
- 21 Y. Feng, C. Chen, Z. Liu, B. Fei, P. Lin, Q. Li, S. Sun and S. Du, J. Mater. Chem. A, 2015, 3, 7163–7169.
- 22 W. Zhen, J. Ma, G. Lu, Appl. Catal. B-Environ., 2016, 190, 12–25.
- 23 J. Balapanuru, G. Chiu, C. Su, N. Zhou, Z. Hai, Q.-H. Xu and K. P. Loh, ACS Appl. Mater. Interfaces, 2015, 7, 880–886.
- 24 X.-Y. Dong, M. Zhang, R.-B. Pei, Q. Wang, D.-H. Wei, S.-Q. Zang, Y.-T. Fan and T. C. W. Mak, *Angew. Chem. Int. Ed.*, 2016, 55, 2073–2077.
- Z.-L. Wu, C.-H. Wang, B. Zhao, J. Dong, F. Lu, W.-H. Wang, W.-C. Wang, G.-J. Wu, J.-Z.
 Cui and P. Cheng, *Angew. Chem. Int. Ed.*, 2016, 55, 4938–4942.
- 26 D. Shi, R. Zheng, M.-J. Sun, X. Cao, C.-X. Sun, C.-J. Cui, C.-S. Liu, J. Zhao and M. Du, *Angew. Chem. Int. Ed.*, 2017, 56, 14637–14641.
- X.-J. Kong, Z. Lin, Z.-M. Zhang, T. Zhang and W. Lin, *Angew. Chem. Int. Ed.*, 2016, 55, 6411–6416.
- 28 D. Shi, R. Zheng, C.-S. Liu, D.-M. Chen, J. Zhao and M. Du, *Inorg. Chem.*, 2019, 58, 7229– 7235.
- 29 P. P. Bag, X.-S. Wang, P. Sahoo, J. Xiong and R. Cao, Catal. Sci. Technol., 2017,7, 5113–5119.

30 X. Fang, Q. Shang, Y. Wang, L. Jiao, T. Yao, Y. Li, Q. Zhang, Y. Luo and H.-L. Jiang, Adv. Mater., 2018, 30, 1705112.