Supporting Information

Synthesis of solvent-free processable and on-demand cross-linkable dielectric elastomers for actuators

Philip Caspari,^{*a,b*} Frank A. Nüesch,^{*a,b*} Dorina M. Opris, ^{*a**}

P. Caspari, Dr. D. M. Opris, Prof. F. Nüesch

Laboratory for functional polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf. Switzerland.

dorina.opris@empa.ch

P. Caspari, Prof. F. Nüesch

École Polytechnique Fédérale de Lausanne (EPFL), Institut des matériaux, Station 12, CH 1015, Lausanne, Switzerland.

Figure S1 ¹H NMR spectrum of P1 (M_n = 2500 g/mol) (top) and (M_n = 5600 g/mol) bottom in CDCl₃.

Figure S4 ¹³C NMR spectrum of **P3** (M_n = 3500 g/mol) in CDCl₃.

Figure S6 GPC elution curves of **P3.2**. *M*_n=3000, *M*_w= 18000, PDI= 5.5

Figure S7 GPC elution curves of **P4**. M_n = 150.000, M_w = 450.000, PDI= 2.4.

Figure S8 GPC elution curves of the depolymerization of P4 under basic conditions.

Figure S9 GPC elution curves of **P5**. M_n = 8500, M_w = 20000, PDI = 2.4.

Figure S12 GPC elution curves of R(SH)₃.

Figure S13 Viscosity of P3.2 measured in the frequency range of 1-10 Hz. Five measurements were performed.

Figure S14 Viscosity of P3 measured in the frequency range of 1-10 Hz. Five measurements were performed.

Figure S15 Viscosity of P3-1 measured in the frequency range of 1-10 Hz. Five measurements were performed.

Figure S16 Viscosity of P3-2 measured in the frequency range of 1-10 Hz. Five measurements were performed.

Figure S17 Viscosity of **P3-3** measured in the frequency range of 1-10 Hz. Five measurements were performed.

Figure S18 Viscosity of **P3-4** measured in the frequency range of 1-10 Hz. Five measurements were performed.

Figure S19 Viscosity of $\alpha'\omega$ -OH-PDMS (M_n = 28 kDa) measured in the frequency range of 1-10 Hz. Five measurements were performed.

Figure S20 Viscosity of $\alpha'\omega$ -OH-PDMS (M_n = 63 kDa) measured in the frequency range of 1-10 Hz. Five measurements were performed.

Figure S21 Viscosity of $\alpha'\omega$ -OH-PDMS (M_n = 139 kDa) measured in the frequency range of 1-10 Hz. Five measurements were performed.

Figure S22 TGA curve of P3 in air.

Figure S23 TGA curve of **R(SH)₃** in air.

9

Figure S25 TGA curve of AB113729 in air.

Figure S26 DMA of E3-1. Four samples were measured.

Figure S27 DMA of **E3-2**. Three samples were measured.

Figure S28 DMA of E3-3. Three samples were measured.

Figure S29 DMA of E3-4. Three samples were measured.

Figure S30 DMA of $\ensuremath{\text{E5}}$. Three samples were measured.

Figure S31 DMA of Elastosil®Film. Three samples were measured.

Figure S32 DMA of **E5** measured 24h/48h/72h after synthesis. The average curve of 3 measurements is given. The identical sample was measured.

Figure S33 Tensile tests of **E3-1**. Three independent tests were performed.

Figure S34 Tensile tests of **E3-2**. Three independent tests were performed.

Figure S35 Tensile tests of **E3-3**. Three independent tests were performed.

Figure S36 Tensile tests of E3-4. Three independent tests were performed.

Figure S37 Tensile tests of E5. Three independent tests were performed.

Figure S38 Tensile tests of Elastosil®Film. Three independent tests were performed.

Figure S39 DSC curves of E3-1.

Figure S42 DSC curves of E3-4.

Figure S43 DSC curves of E5.

Figure S44 TGA curve of **E3-1** in air.

Figure S45 TGA curve of E3-2 in air.

Figure S46 TGA curve of **E3-3** in air.

Figure S47 TGA curve of E3-4 in air.

Figure S48 TGA curve of E5 in air.

Figure S49 Dielectric properties of P3 and R(SH)₃.

Figure S50 Lateral strain in x-and y-direction (strain 1 and strain 2) of E3-1 as a function of the applied electric field.

Figure S51 Lateral strain in x-and y-direction (strain 1 and strain 2) of E3-2 as a function of the applied electric field.

Figure S52 Lateral strain in x-and y-direction (strain 1 and strain 2) of E3-3 as a function of the applied electric field.

Figure S53 Lateral strain in x-and y-direction (strain 1 and strain 2) of E3-4 as a function of the applied electric field.

Figure S54 Lateral strain in x-and y-direction (strain 1 and strain 2) of E3-4 as a function of the applied electric field.

Figure S55 Lateral strain in x-and y-direction (strain 1 and strain 2) of **Elastosil®Film** as a function of the applied electric field.

Figure S56 Average lateral strain of **E3-Y** and **Elastosil®Film** as a function of the applied electric field (DC) operated at 1 Hz. The electric field was 80 V/µm for **Elastosil®Film**, 30 V/µm for **E3-1**, 25 V/µm for **E3-2/E3-3**, and 20 Vµm for **E3-4**.

Figure S57 Average lateral strain of **E3-Y** and **Elastosil®Film** as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm for **Elastosil®Film**, 30 V/µm for **E3-1**, 25 V/µm for **E3-2/E3-3**, and 20 Vµm for **E3-4**.

Figure S58 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 4 Hz. The electric field was 80 V/µm for Elastosil®Film, 30 V/µm for E3-1, 25 V/µm for E3-2/E3-3, and 20 Vµm for E3-4.

time (s) Figure S59 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 8 Hz. The electric field was 80 V/μm for Elastosil®Film, 30 V/μm for E3-1, 25 V/μm for E3-2/E3-3, and 20 Vμm for E3-4.

Figure S60 10 x 10.000 operation cycles at 8 Hz at 25 V/ μ m of a circular DEA test device constructed from a 75 μ m-thin film of **E3-1** with an area diameter of 8 mm. Strain 1 is defined as the lateral strain in x-direction. Strain 2 is defined as the lateral strain in y-direction.

Figure S61 5 x 10.000 operation cycles + 1 x 20.0000 at 8 Hz at 29 V/ μ m of a circular DEA test device constructed from a 85 μ m-thin film of **E3-2** with an area diameter of 8 mm. Strain 1 is defined as the lateral strain in x-direction. Strain 2 is defined as the lateral strain in y-direction.

Figure S62 3 x 10.000 + 2 x 30.0000 DEA operation cycles at 8 Hz at 25 V/ μ m of a circular DEA test device constructed from a 90 μ m-thin film of **E3-3** with an area diameter of 8 mm. Strain 1 is defined as the lateral strain in x-direction. Strain 2 is defined as the lateral strain in y-direction.

Figure S63 1 x 10.000 DEA operation cycles at 8 Hz at 15 V/ μ m of a circular DEA test device constructed from a 100 μ m-thin film of **E3-4** with an area diameter of 8 mm. Strain 1 is defined as the lateral strain in x-direction. Strain 2 is defined as the lateral strain in y-direction.

Figure S64 2 x 50.000 and 2 x 40.000 DEA operation cycles at 8 Hz at 25 V/ μ m of a circular DEA test device constructed from a 85 μ m-thin film of E5 with an area diameter of 8 mm. Strain 1 is defined as the lateral strain in x-direction. Strain 2 is defined as the lateral strain in y-direction.