Supporting Information for

Methane-Perylene Diimides-Based Small Molecule Acceptors for High Efficiency Non-Fullerene Organic Solar Cells

 Yu Zhang ${ }^{\text {a }}$, Dandan Li ${ }^{\text {a }}$, Xinyu Wang ${ }^{\text {a }}$, Pin Hao ${ }^{\text {a }}$, Jiewei Li, ${ }^{\text {d }}$ Lijun Huo, ${ }^{*} \mathrm{e} \mathrm{He}$ Yan ${ }^{\text {b }}$ and Bo Tang ${ }^{\mathrm{a}^{*}}$
${ }^{\text {a }}$ College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
${ }^{\text {b }}$ Department of Chemistry and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
${ }^{\text {c }}$ Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong, China.
${ }^{\text {d }}$ Key Laboratory of Flexible Electronics (KLOFE) \& Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China.
${ }^{\mathrm{e}}$ School of Chemistry, Beihang University, Beijing 100191, P. R. China

${ }^{\text {* }}$ These authors contributed equally to this work.

Corresponding E-mail: ligang@sdnu.edu.cn; Liutaozhx@ust.hk; hyan@ust.hk; tangb@sdnu.edu.cn; huolijun@buaa.edu.cn

1. General information

All solvents and chemicals used were purchased from Energy Chemical and used without further purification. PDBT-T1 ${ }^{1}$ (Figure S4), compound $\operatorname{bis}\left(4^{\prime}-\left(3,3,4,4\right.\right.$-tetramethyl-2,5,1-dioxaboryl)phenyl)methane (1), ${ }^{2}$ Tetrakis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methane (3), ${ }^{3}$ PDI-Br (4) ${ }^{4}$ were synthesized according to the reported literatures with minor modifications. TLC analyses were carried out by using Sorbent Technologies silica gel (200 mm) sheets. Column chromatography was performed on Sorbent silica gel 60 ($40-63 \mathrm{~mm}$). Solution NMR spectra were taken on a Bruker 400 MHz spectrometer in CDCl_{3} at room temperature, both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were referenced to solvent residue peaks and the spectroscopic solvents were purchased from Cambridge Isotope Laboratories. Mass spectra were measured on a Bruker Maxis UHR-TOF MS spectrometer. UV-vis absorption spectra were performed with a Beijing Purkinje General Instrument Co. Ltd. TU-1901 spectrophotometer. All steady-state measurements were carried out using a quartz cuvette with a path length of 1 cm . Thermogravimetric analysis (TGA) was carried out on a TA Instrument TA Q50 Thermogravimetric Analyzer at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ up to $600^{\circ} \mathrm{C}$.

2. Solar cell fabrication and characterization

Solar cells were fabricated in a conventional device configuration of ITO/PEDOT: PSS/active layer/ZrAcAc/Al. The ITO substrates were first scrubbed by detergent and then sonicated with deionized water, acetone and isopropanol subsequently, and dried overnight in an oven. The glass substrates were treated by UV-Ozone for 30 min before use. PEDOT: PSS (Heraeus Clevios P VP A 4083) layer was spin-cast onto the ITO substrates at 4000 rmp for 40 s , and then dried at $150{ }^{\circ} \mathrm{C}$ for 15 min in air. The donor:acceptor blends with 1:1 ratio were dissolved in dichlorobenzene (the concentration of blend solutions are $20 \mathrm{mg} / \mathrm{mL}$ for all blend films), and stirred overnight in a nitrogen-filled glove box. The blend solution was spin-cast at 1600 rmp for 40s on the top of PEDOT: PSS layer followed by annealed at $100{ }^{\circ} \mathrm{C}$ for 5 min to remove the residual solvent. A thin ZrAcAc layer (10 nm) and Al layer (100 nm) were sequentially evaporated through a shadow mask under vacuum of $5 \times 10^{-5} \mathrm{~Pa}$. The area
of each device was $5.90 \mathrm{~mm}^{2}$ defined by a shadow mask. The optimal blend thickness was about 95 nm , measured on a Bruker Dektak XT stylus profilometer. Current density-voltage (J-V) curves were measured in a Keithley 2400 Source Measure Unit. Photocurrent was measured in an Air Mass 1.5 Global (AM 1.5 G) solar simulator (Class AAA solar simulator, Model 94063A, Oriel) with an irradiation intensity of $100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$, which was measured by a calibrated silicon solar cell and a readout meter (Model 91150V, Newport). IPCE spectra were measured by using a QEX10 Solar Cell IPCE measurement system (PV measurements, Inc.).

3. Space charge-limited current (SCLC) device fabrication

The structure of electron-only devices is $\mathrm{ITO} / \mathrm{ZnO} /$ active layer/ $\mathrm{ZrAcAc} / \mathrm{Al}$ and the structure of hole-only devices is $\mathrm{ITO} / \mathrm{MoO}_{\mathrm{X}} /$ active layers $/ \mathrm{MoO}_{\mathrm{X}} / \mathrm{Al}$. The fabrication conditions of the active layer films are same with those for the solar cells. The charge mobilities are generally described by the Mott-Gurney equation:

$$
J=\frac{9}{8} \varepsilon_{\gamma} \varepsilon_{0} \mu \frac{V^{2}}{L^{3}}
$$

where J is the current density, ε_{0} is the permittivity of free space $\left(8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}\right)$, ε_{γ} is the dielectric constant of used materials, μ is the charge mobility, V is the applied voltage and L is the active layer thickness. The ε_{γ} parameter is assumed to be 3, which is a typical value for organic materials. In organic materials, charge mobility is usually field dependent and can be described by the disorder formalism, typically varying with electric field, $\mathrm{E}=\mathrm{V} / \mathrm{L}$, according to the equation:

$$
\mu=\mu_{0} \exp \left[0.89 \gamma \sqrt{\frac{V}{L}}\right]
$$

Where μ_{0} is the charge mobility at zero electric field and γ is a constant. Then, the Mott-Gurney equation can be described by:

$$
J=\frac{9}{8} \varepsilon_{\gamma} \varepsilon_{0} \mu_{0} \frac{V^{2}}{L^{3}} \exp \left[0.89 \gamma \sqrt{\frac{V}{L}}\right]
$$

4. Film and Device Characterization

The ultraviolet-visible (UV-Vis) absorption spectra of neat and blend films were obtained using a Shimadzu UV-3101 PC spectrometer. The current-voltage (I-V)
curves of all OSCs were measured in a high-purity nitrogen-filled glove box using a Keithley 2400 source meter. AM 1.5 G irradiation at $100 \mathrm{~mW} / \mathrm{cm}^{2}$ provided by An XES-40S2 (SAN-EI Electric Co., Ltd.) solar simulator (AAA grade, $70 \times 70 \mathrm{~mm}^{2}$ photobeam size), which was calibrated by standard silicon solar cells (purchased from Zolix INSTRUMENTS CO. LTD). The external quantum efficiency (EQE) spectra of solar cells were measured in air conditions by a Zolix Solar Cell Scan 100. The morphology of the active layers was investigated by atomic force microscopy (AFM) using a Dimension Icon AFM (Bruker) in a tapping mode.

5. Electrochemical Characterization

Electrochemical measurements were performed under nitrogen in deoxygenated 0.1 M solutions of tetra-n-butylammonium hexafluorophosphate in dry dichloromethane using a CHI 660C electrochemical workstation, a glassy carbon working electrode, a platinum wire auxiliary electrode, and an $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode. Cyclic voltammograms were recorded at a scan rate of $50 \mathrm{mV} \mathrm{s}^{-1}$. The lowest unoccupied molecular orbital (LUMO) levels were estimated based on the onset reduction potential ($\mathrm{E}_{\mathrm{red}}$), and the reduction potential was calibrated using ferrocene $\left(\mathrm{E}_{\mathrm{Fc} / \mathrm{Fc}+}\right)$ as a reference $\left(\mathrm{E}_{\text {red }}=-\left[\mathrm{E}_{\text {measured }}-\mathrm{E}_{\mathrm{Fc} / \mathrm{Fc}+}+4.8\right] \mathrm{eV}\right)$. Ferrocene as an internal standard. Under the same condition, the onset oxidation potential of ferrocene was measured to be 0.336 V versus $\mathrm{Ag} / \mathrm{Ag}^{+}$.

6. AFM Characterization.

AFM measurements were performed by using a Scanning Probe Microscope-Dimension 3100 in tapping mode. All films were coated on ITO glass substrates.

7. Computational Studies

The geometry was optimized by density functional theory (DFT) using the B3LYP hybrid functional with basis set $6-31 \mathrm{G}(\mathrm{d}){ }^{5}$ Quantum chemical calculation was performed with the Gaussian 09 package. The long alkyl chains were replaced with an isopropyl group for simplification.

PDBT-T1

PM-PDI ${ }_{2}$

PM-PDI 3

PDI

Figure S1. Molecular structures of PDBT-T1, PM-PDI $2, \mathbf{P M}_{\mathbf{~ P D I I}}^{3} \mathbf{~ a n d ~} \mathbf{P M}-\mathrm{PDI}_{4}$.

Figure S2. Absorption spectra of $\mathbf{P M}-\mathbf{P D I}_{2}, \mathbf{P M}_{2}-\mathrm{PDI}_{3}$ and $\mathbf{P M}-\mathrm{PDI}_{4}$ in dichloromethane solutions.

Figure S3. Absorption spectra of PBDB-T1, PM-PDI $\mathbf{2}_{2}, \mathbf{P M}_{\mathbf{P}} \mathbf{P D I}_{3}$ and $\mathbf{P M}-\mathbf{P D I}_{\mathbf{4}}$ films.

Figure S4. Dark current density-voltage characteristics for electron-only devices with optimized $\mathbf{P M}-\mathbf{P D I}_{2}, \mathbf{P M}-\mathbf{P D I}_{3}$ and $\mathbf{P M}-\mathbf{P D I}_{4}$ films.

Figure S5. Optimized molecular geometries of $\mathbf{P M}-\mathbf{P D I}_{2}, \mathbf{P M}_{\mathbf{~}}-\mathbf{P D I}_{3}$ and $\mathbf{P M}-\mathbf{P D I}_{4}$ at B3LYP/6-31G(d).

65.32°

$\mathbf{P M}^{\mathbf{P M D I}} 3$

Figure S6. Optimized molecular geometries of $\mathbf{P M}-\mathbf{P D I}_{2}, \mathbf{P M}_{\mathbf{~}}-\mathbf{P D I}_{3}$ and $\mathbf{P M}-\mathbf{P D I}_{4}$ at B3LYP/6-31G(d).

Table S1. The calculated data of $\mathbf{P M}-\mathbf{P D I}_{2}, \mathbf{P M}-\mathbf{P D I}_{3}$ and $\mathbf{P M}-\mathbf{P D I}_{4}$.

Samples	HOMO	LUMO	$\mathbf{E}_{\mathbf{g}}$
${\mathbf{P M}-\mathrm{PDI}_{2}}^{\mathbf{P M}_{\mathbf{- P D I}}^{3}} \mathbf{}$	-5.84	-3.38	2.46
$\mathbf{P M}_{\mathbf{- P D I}}^{4}$	-5.74	-3.45	2.29

Table S2. Hole and electron mobility of as-synthesized acceptors and blend films.

Samples	Hole mobility $\left(\mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$	electron mobility $\left(\mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$
PDBT-T1: PM-PDI ${ }_{2}$	6.59×10^{-4}	3.01×10^{-4}
PDBT-T1: PM-PDI ${ }_{3}$	7.54×10^{-4}	4.43×10^{-4}
PDBT-T1: $\mathrm{PM}^{\text {P-PDI }} 4$	7.92×10^{-4}	4.53×10^{-4}
PM-PDI ${ }_{2}$	-	5.78×10^{-4}
$\mathrm{PM}^{\text {PPDI }} 3$	-	7.08×10^{-4}
PM-PDI ${ }_{4}$	-	7.39×10^{-4}

Table S3. Key photovoltaic parameters calculated from the $J_{\mathrm{ph}}-V_{\text {eff }}$ curves of PDBT-T1: PM-PDI ${ }_{2}$, PDBT-T1: PM-PDI ${ }_{3}$ and PDBT-T1: PM-PDI $_{4}$ based devices after annealing.

Samples	$\begin{gathered} \mathrm{J}_{\mathrm{stat}}{ }^{\mathrm{a}} \\ \left(\mathrm{~mA} . \mathrm{cm}^{-2}\right) \end{gathered}$	$\begin{gathered} \mathrm{J}_{\mathrm{ph}}{ }^{\mathrm{b}} \\ \left(\mathrm{~mA} \cdot \mathrm{~cm}^{-2}\right) \end{gathered}$	$\begin{gathered} \mathrm{J}_{\mathrm{ph}}{ }^{\mathrm{c}} \\ (\mathrm{mA.cm} \end{gathered}$	$\mathbf{J}_{\mathrm{ph}}{ }^{\mathbf{b}} / \mathbf{J}_{\mathrm{sat}}$ (\%)	$\mathbf{J}_{\mathrm{ph}}{ }^{\mathrm{c}} / \mathbf{J}_{\mathrm{sat}}$ (\%)
$\begin{aligned} & \text { PDBT-T1: } \\ & \text { PM-PDI }_{2} \end{aligned}$	11.378	8.490	4.452	74.6	39.4
PDBT-T1: $\mathbf{P M}_{-\mathrm{PDI}_{3}}$	11.875	11.022	9.223	92.8	77.6
PDBT-T1: $\text { PM-PDI }_{4}$	12.339	11.203	9.160	90.8	74.2

${ }^{a}$ The J_{ph} under condition of $\mathrm{V}_{\text {eff }}=3.0 \mathrm{~V}$; ${ }^{\mathrm{b}}$ The J_{ph} under short circuit condition; ${ }^{\mathrm{c}}$ The J_{ph} under maximum power output condition.

Table S4. Cost evaluation for the synthesis of $\mathbf{P M}-\mathbf{P D I}_{3}(1 \mathrm{~g})$.

	Commercial available chemicals	Price	Dosage	Cost
Step 1	p-dibromobenzene	$25 \mathrm{~g} / 55 \mathrm{RMB}$	2.41 g	5.30 RMB
	$\mathrm{n}-\mathrm{BuLi}$	$100 \mathrm{~mL} / 84 \mathrm{RMB}$	3.7 mL	3.11 RMB
	THF	$500 \mathrm{~mL} / 18 \mathrm{RMB}$	50 mL	1.8 RMB
	EtOAc	$500 \mathrm{~mL} / 8.8 \mathrm{RMB}$	250 mL	4.4 RMB
	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$500 \mathrm{~g} / 10 \mathrm{RMB}$	2 g	0.04 RMB
	petroleum ether	$500 \mathrm{~mL} / 7.3 \mathrm{RMB}$	800 mL	11.68 RMB
	silica gel	$500 \mathrm{~g} / 15 \mathrm{RMB}$	200 g	6 RMB
	diethyl carbonate	$100 \mathrm{~mL} / 55 \mathrm{RMB}$	0.3 mL	0.17 RMB
Step 2	tris(4-bromophenyl)methanol		1.34 g	
	Formic acid	$100 \mathrm{~g} / 55 \mathrm{RMB}$	26 mL	17.45 RMB
	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	$500 \mathrm{~g} / 20 \mathrm{RMB}$	30 g	1.2 RMB
	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$500 \mathrm{~mL} / 8.8 \mathrm{RMB}$	120 mL	2.12 RMB
	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$500 \mathrm{~g} / 10 \mathrm{RMB}$	2 g	0.04 RMB
	silica gel	$500 \mathrm{~g} / 15 \mathrm{RMB}$	200 g	6 RMB
Step 3	tris(4-bromophenyl)methane		1.04 g	
	bis(pinacolato)diboron	$25 \mathrm{~g} / 85 \mathrm{RMB}$	2.47 g	8.40 RMB
	Pd (dppf) Cl_{2}	$5 \mathrm{~g} / 400 \mathrm{RMB}$	275 mg	22 RMB
	potassium acetate	$100 \mathrm{~g} / 65 \mathrm{RMB}$	1.46 g	0.95 RMB
	1,4-dioxane	$500 \mathrm{~mL} / 36 \mathrm{RMB}$	26 mL	1.88 RMB
	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$500 \mathrm{~mL} / 8.8 \mathrm{RMB}$	800 mL	14.08 RMB
	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$500 \mathrm{~g} / 10 \mathrm{RMB}$	2 g	0.04 RMB
	petroleum ether	$500 \mathrm{~mL} / 7.3 \mathrm{RMB}$	200 mL	2.92 RMB
	silica gel	$500 \mathrm{~g} / 15 \mathrm{RMB}$	200 g	6 RMB
Step 4	tridecan-7-one	$25 \mathrm{~g} / 891 \mathrm{RMB}$	5.48 g	195.31RMB
	ethanol	$500 \mathrm{~mL} / 7 \mathrm{RMB}$	85 mL	1.19 RMB
	pyridine	$500 \mathrm{~mL} / 85 \mathrm{RMB}$	42 mL	7.14 RMB
	hydroxylamine hydrochloride	$100 \mathrm{~g} / 45 \mathrm{RMB}$	4 g	1.8 RMB
	HCl	$500 \mathrm{~mL} / 15 \mathrm{RMB}$	20 mL	0.6 RMB
	petroleum ether	$500 \mathrm{~mL} / 7.3 \mathrm{RMB}$	600 mL	8.76 RMB
	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$500 \mathrm{~g} / 10 \mathrm{RMB}$	6 g	0.12 RMB
Step 5	tridecan-7-one oxime		5.85 g	
	toluene	$500 \mathrm{~mL} / 12 \mathrm{RMB}$	112 mL	2.69 RMB
	Red Al (70\% in toluene)	$100 \mathrm{~g} / 108 \mathrm{RMB}$	36.3 g	39.2 RMB
	HCl	$500 \mathrm{~mL} / 15 \mathrm{RMB}$	32 mL	0.96 RMB
	petroleum ether	$500 \mathrm{~mL} / 7.3 \mathrm{RMB}$	900 mL	13.14 RMB
	NaOH	$500 \mathrm{~g} / 55 \mathrm{RMB}$	40 g	4.4 RMB
	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$500 \mathrm{~g} / 10 \mathrm{RMB}$	2 g	0.04 RMB
Step 6	tridecan-7-amine		5.29 g	
	perylene-3,4,9,10-tetracarboxy lic dianhydride (90% purity)	$25 \mathrm{~g} / 109 \mathrm{RMB}$	4.16 g	18.14 RMB
	anhydrous zinc acetate	$100 \mathrm{~g} / 59 \mathrm{RMB}$	1.41 g	0.84 RMB
	imidazole	$25 \mathrm{~g} / 40 \mathrm{RMB}$	21 g	33.6 RMB

	methanol	$500 \mathrm{~mL} / 6.5 \mathrm{RMB}$	30 mL	0.39 RMB
Step 7	PDI		6.48 g	
	bromine	$500 \mathrm{~g} / 85 \mathrm{RMB}$	124 g	21.08 RMB
	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$500 \mathrm{~mL} / 8.8 \mathrm{RMB}$	810 mL	14.26 RMB
	sodium sulfite	$500 \mathrm{~g} / 47 \mathrm{RMB}$	50 g	4.7 RMB
	petroleum ether	$500 \mathrm{~mL} / 7.3 \mathrm{RMB}$	1500 mL	21.9 RMB
	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$500 \mathrm{~g} / 10 \mathrm{RMB}$	2 g	0.04 RMB
	silica gel	$500 \mathrm{~g} / 15 \mathrm{RMB}$	300 g	9 RMB
Step 8	PDI-Br (60\% yield)		4.29 g	
	TPM-Pin ${ }_{3}$		0.8 g	
	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$5 \mathrm{~g} / 280 \mathrm{RMB}$	0.8 g	44.8 RMB
	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$500 \mathrm{~g} / 89 \mathrm{RMB}$	50.2 g	8.94 RMB
	tricaprylylmethylammonium chloride	25mL/65RMB	5 mL	13 RMB
	toluene	$500 \mathrm{~mL} / 12 \mathrm{RMB}$	400 mL	9.6 RMB
	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$500 \mathrm{~mL} / 8.8 \mathrm{RMB}$	1000 mL	17.6 RMB
	petroleum ether	$500 \mathrm{~mL} / 7.3 \mathrm{RMB}$	250 mL	3.65 RMB
	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$500 \mathrm{~g} / 10 \mathrm{RMB}$	2 g	0.04 RMB
	silica gel	$500 \mathrm{~g} / 15 \mathrm{RMB}$	250 g	7.5 RMB
Total cost	$\mathbf{P M}-\mathrm{PDI}_{3}$			620.01 RMB

8. Synthesis and Characterization

Scheme S1. Synthetic routes of compound 1.

Scheme S2. Synthetic routes of compound 2.

Scheme S3. Synthetic routes of compound 3.

Scheme S4. Synthetic routes of compound 5.

Scheme S5. Synthetic routes of three target molecules.

The details of synthesis

Bis(4-bromophenyl)methanol. To a solution of 1,4-dibromobenzene ($5.66 \mathrm{~g}, 24.0$ $\mathrm{mmol})$ in THF $(45 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(8.8 \mathrm{~mL}, 22.0 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane) dropwise. The slurry was stirred for 1 h and added to a solution of 4-bromobenzylaldehyde ($3.7 \mathrm{~g}, 20 \mathrm{mmol}$) in THF (50 mL) which was cooled at $-78{ }^{\circ} \mathrm{C}$. The yellow solution was allowed to warmed to room temperature and stirred for 2 h before pouring into water. The mixture was extracted with ethyl acetate. The combined organic fractions were washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by silicon chromatography (petroleum ether / $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 2$,

V/V) to get pure product as a white solid ($5.51 \mathrm{~g}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.C D C l_{3}\right) \delta 7.45(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.74(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.21(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H})$.

Bis(4-bromophenyl)methane. To a solution of bis(4-bromophenyl)methanol (2.91 g , $8.5 \mathrm{mmol})$ in TFA (95 mL) was added sodium borohydride ($3.22 \mathrm{~g}, 85.1 \mathrm{mmol}$) in small portions at room temperature over 10 min . The resulting white slurry was stirred for 1 h before pouring into water. The suspension was carefully made alkaline with aqueous sodium hydroxide solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic fraction was washed with water, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvents followed by filtering through a short silica gel column (hexane) afforded desired product as a white solid ($2.07 \mathrm{~g}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, 4 \mathrm{H}), 7.01(\mathrm{~d}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H})$.

bis(4'-(3,3,4,4-tetramethyl-2,5,1-dioxaboryl)phenyl)methane
Bis(4-bromophenyl)methane ($1.67 \mathrm{~g}, 5.12 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in 80 mL THF and cooled to $-78{ }^{\circ} \mathrm{C}$. Then n-BuLi ($2.5 \mathrm{M}, 5.0 \mathrm{~mL}, 12.5 \mathrm{mmol}, 2.4 \mathrm{eq}$) was syringed into the cooled solution over the course of 3 min . Then neat isopropyl pinacol borate ($4.5 \mathrm{~mL}, 21.6 \mathrm{mmol}, 4.2 \mathrm{eq}$) was quickly added in stream. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min and allowed to warm to room temperature slowly. After 3 hours, the reaction was carefully quenched with water $(100 \mathrm{~mL})$. The mixture was extracted with dichloromethane $(3 \times 100 \mathrm{~mL})$ and combined the organic layers were washed with
brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentrating under reduced pressure, the crude product was purified by silicon chromatography (petroleum ether / $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 2, \mathrm{~V} / \mathrm{V}$) to get pure product as white powder ($946 \mathrm{mg}, 44 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm): $\delta 7.73(\mathrm{~d}, 4 \mathrm{H}), 7.18(\mathrm{~d}, 4 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 24 \mathrm{H})$.

Tris(4-bromophenyl)methanol. p-dibromobenzene ($8.7 \mathrm{~g}, 37.2 \mathrm{mmol}$) and THF (135 mL) were added to a flame-dried 3-neck 300 mL round-bottom flask equipped with a stirbar, three-way vacuum inlet adapter, glass stopper, and septum. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{n}-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $13.5 \mathrm{~mL}, 33.8 \mathrm{mmol}$) was added dropwise. Separately, diethyl carbonate ($1.02 \mathrm{~mL}, 8.5 \mathrm{mmol}$) was dissolved in THF (3 mL) in a flame-dried 300 mL round-bottom flask equipped with a stirbar, septum, and nitrogen inlet needle and cooled to $-78{ }^{\circ} \mathrm{C}$. After 3 h , the solution containing the lithiated species was transferred to the diethyl carbonate solution through a cannula and the solution was subsequently allowed to warm to R.T. After 6 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The crude product was extracted with EtOAc. The organic fractions were collected, washed with brine, and dried over anhydrous MgSO_{4}. The crude solid was dry loaded onto SiO_{2} and chromatographed using a gradient of hexanes to 25% EtOAc:hexanes (v/v) to yield $3.38 \mathrm{~g}(80 \%)$ product as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, C D C l_{3}, \mathrm{ppm}$): $\delta 7.45(6 \mathrm{H})$, $7.12(6 \mathrm{H}), 2.70(1 \mathrm{H})$.

Tris(4-bromophenyl)methane. Tris(4-bromophenyl)methanol ($1.25 \mathrm{~g}, 2.52 \mathrm{mmol}$) was added to a 50 mL round-bottom flask. Formic acid (95% in $\mathrm{H}_{2} \mathrm{O}, 25 \mathrm{~mL}$) was added slowly. A condenser was then attached to the flask and the bright yellow suspension was heated to $100{ }^{\circ} \mathrm{C}$ for 19 h to give a dull yellow suspension. The remaining acid was neutralized with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(100 \mathrm{~mL})$, which caused a white solid to precipitate. The aqueous suspension was washed with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 40 mL) and the combined organic phases were washed with brine, dried with MgSO_{4} and evaporated. The resulting crude solid was run through a plug of SiO_{2} in pentane, enabling the isolation of product ($0.897 \mathrm{~g}, 74 \%$ yield) as a white crystalline solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.42(6 \mathrm{H}), 6.93(6 \mathrm{H}), 5.40(1 \mathrm{H})$.

Tris(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methane (2)

In a dried 500 mL three-neck round bottle flask was added anhydrous dioxane (20 mL) and $\mathrm{KOAc}(0.836 \mathrm{~g}, 8.8 \mathrm{mmol})$, then bubbled with Ar_{2} for 30 minutes. Tris(4-bromophenyl)methane ($4.23 \mathrm{~g}, 8.8 \mathrm{mmol}$), bis(pinacolato)diboron ($0.92 \mathrm{~g}, 3.52$ $\mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(150 \mathrm{mg}, 0.205 \mathrm{mmol})$ were added respectively under Ar_{2} protection. The mixture was heated to $110^{\circ} \mathrm{C}$ for 72 h and was monitored using TLC. Then the reaction mixture was cooled to room temperature, removed the dioxane under reduced pressure and poured into water. The solution was stirred for 10 minutes
and filtered, washed the residue by water and dried under vacuum. The residue was dissolved in dichloromethane and purified using flash column chromatograph with petroleum ether / $\mathrm{CH}_{2} \mathrm{Cl}_{2},(1: 1, \mathrm{~V} / \mathrm{V})$ as eluent to remove the impurities, then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to obtain the product as a white product ($3.17 \mathrm{~g}, 58 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.71(\mathrm{~d}, 6 \mathrm{H}), 7.10(\mathrm{~d}, 6 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 146.63,134.82,128.92,83.70,76.69,57.30,24.84$. HRMS: $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{~B}_{3} \mathrm{NaO}_{6}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, calcd, 645.3706; found, 645.3664.

Synthesis of PM-PDI ${ }_{2}$. A three-neck flask charged with compound 1 ($60 \mathrm{mg}, 0.143$ $\mathrm{mmol}), \mathrm{PDI}-\mathrm{Br}(300 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(80 \mathrm{mg}, 0.069 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.9 \mathrm{~g}$, 21 mmol) , Tricaprylylmethylammonium chloride (2 drops) and degassed in dry toluene / $\mathrm{H}_{2} \mathrm{O}(21 \mathrm{~mL} / 10.5 \mathrm{~mL})$. The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 48 h . After cooled to room temperature, the reaction mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was purified by silicon chromatography (petroleum ether / $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 2$, V/V) to get pure product as a red solid ($180 \mathrm{mg}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.71-8.59(\mathrm{~m}, 10 \mathrm{H}), 8.20-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.97(\mathrm{~d}, 4 \mathrm{H}), 7.51(\mathrm{~d}, 2 \mathrm{H}), 7.41(\mathrm{~d}$, $4 \mathrm{H}), 5.23-5.16(\mathrm{~m}, 4 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 2.24-2.19(\mathrm{~m}, 8 \mathrm{H}), 1.84-1.81(\mathrm{~m}, 8 \mathrm{H}), 1.28-1.20$ $(\mathrm{m}, 68 \mathrm{H}), 0.83-0.79(\mathrm{~m}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 164.80, 164.63, 163.72, 163.54, 141.54, 141.12, 140.70, 136.66, 135.96, 134.78, 134.48, 132.44, $131.59,131.32,130.99,130.81,130.58,129.92,129.16,128.81,128.50,128.05$, $127.55,123.66,123.50,123.02,122.80,122.64,122.07,54.71,54.62,41.31,32.33$, 31.75, 31.72, 29.22, 29.19, 26.87, 22.58, 22.57, 14.05, 14.04. FT-IR (KBr): 2954, 2922, 2853, 1698, 1657, 1591, 1505, 1455,1407, 1364, 1331, 1245, 1173, 810, 748. HRMS: $\mathrm{C}_{113} \mathrm{H}_{133} \mathrm{~N}_{4} \mathrm{O}_{8}\left(\mathrm{M}^{+}+\mathrm{H}\right)$, calcd, 1675.0157; found.1675.0172.

Synthesis of $\mathbf{P M}^{2}$ PDI $_{3}$. A three-neck flask charged with compound 2 ($100 \mathrm{mg}, 0.161$ $\mathrm{mmol}, 1.0 \mathrm{eq}$), $\operatorname{PDI-Br}(536 \mathrm{mg}, 0.643 \mathrm{mmol}, 4.0 \mathrm{eq}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(100 \mathrm{mg}, 0.087$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(6.27 \mathrm{~g}, 0.045 \mathrm{~mol})$, tricaprylylmethyl- ammonium chloride (2 drops) and degassed in dry toluene / $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL} / 25 \mathrm{~mL})$. The reaction mixture was heated at $120{ }^{\circ} \mathrm{C}$ for 48 h . After cooled to room temperature, the reaction mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was purified by silicon chromatography (petroleum ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 3, \mathrm{~V} / \mathrm{V}$) to get pure product as a dark red solid (125 mg , 31% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.65(\mathrm{~m}, 10 \mathrm{H}), 8.15-8.05(\mathrm{~m}, 4 \mathrm{H})$, 7.60-7.47 (m, 8H), 5.34-5.09 (m, 6H), 2.25-2.14 (m, 8H), $1.83(\mathrm{~m}, 8 \mathrm{H}), 1.26-1.15(\mathrm{~m}$, $68 \mathrm{H}), 0.78(\mathrm{~d}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.69,163.67,143.64,141.52$, $141.32,136.63,134.91,134.54,133.95,133.83,132.59,131.42,130.45,129.94$, $129.75,129.28,129.02,128.66,128.13,127.66,124.47,123.55,123.15,122.72$, 56.11, 54.79, 32.40, 32.31, 31.76, 31.68, 29.71, 29.22, 29.13, 26.90, 26.85, 22.58, 22.52, 14.02, 13.98. FT-IR (KBr): 2953, 2925, 2855, 1699, 1657, 1590, 1500, 1454,1404, 1365, 1330, 1242, 1173, 812, 750. HRMS: $\mathrm{C}_{169} \mathrm{H}_{196} \mathrm{~N}_{6} \mathrm{O}_{12}\left(\mathrm{M}^{+}\right)$, calcd, 2502.4945; found 2502.4975 .

Synthesis of $\mathbf{P M}^{2}-$ PDI $_{4}{ }^{\mathbf{3}}$ A three-neck flask charged with tetrakis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methane ${ }^{3} \quad$ (66 mg , $0.080 \mathrm{mmol}, 1.0 \mathrm{eq}), \operatorname{PDI}-\mathrm{Br}^{4}(333.6 \mathrm{mg}, 0.405 \mathrm{mmol}, 5 \mathrm{eq}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(40 \mathrm{mg}, 0.035$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($165.6 \mathrm{mg}, 1.2 \mathrm{mmol}$) and degassed dry THF / $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL} / 6 \mathrm{~mL})$. The reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 72 h . After cooled to room temperature, the reaction mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was purified by silicon chromatography (petroleum ether / $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 3, \mathrm{~V} / \mathrm{V}$) to get pure product as a dark red solid ($72 \mathrm{mg}, 27 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.73-8.63(\mathrm{~m}, 5 \mathrm{H})$, 8.05 (m, 2H), 7.69-7.60 (m, 4H), 5.19 (m, 2H), 2.24-1.84 (m, 8H), 1.30-0.88 (m, 34H), 0.81-0.66 (m, 12H). FT-IR (KBr): 2952, 2925, 2855, 1699, 1658, 1590, 1499, 1455, 1407, 1331, 1246, 1174, 812, 750. HRMS: $\mathrm{C}_{225} \mathrm{H}_{261} \mathrm{~N}_{8} \mathrm{O}_{16}\left(\mathrm{M}^{+}+\mathrm{H}\right)$, calcd, 3332.9923; found, 3332.9910 .

9. Spectroscopic data

Figure S7. ${ }^{1}{ }^{1}$ NMR spectrum of compound $\mathbf{P M}-$ PDI $_{2}$.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{P M}-\mathrm{PDI}_{2}$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2.

Figure S11. ${ }^{13} \mathrm{C}$ NMR spectrum of compound PM-PDI $_{3}$.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{P M}-$ PDI $_{3}$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{P M}$-PDI 4 .

Figure S14. HRMS profile of compound 2.

MALDI,50

Figure S15. MAIDI-TOF profile of PM-PDI ${ }_{2}$.

MALDI,3-1G,20180518

Figure S16. MAIDI-TOF profile of compound $\mathbf{P M}_{\mathbf{~ P D I}}^{3}$.

MALDI,51

Figure S17. MAIDI-TOF profile of compound PM-PDI $_{4}$.

Figure S18. TGA profile of three compounds.

Figure S19. FT-IR spectrum of compound PM-PDI ${ }_{2}$.

Figure S20. FT-IR spectrum of compound $\mathbf{P M}-\mathbf{P D I}_{3}$.

Figure S21. FT-IR spectrum of compound PM-PDI 4 .

10. Reference

1. D. Sun, D. Meng, Y. Cai, B. Fan, Y. Li, W. Jiang, L. Huo, Y. Sun and Z. Wang, J. Am. Chem. Soc., 2015, 137, 11156.
2. P. Li, T. J. Sisto, E. R. Darzi and R. Jasti, Org. Lett., 2014, 16, 182.
3. Liu, Y.; Lai, J. Y. L.; Chen, S.; Li, Y.; Jiang, K.; Zhao, J.; Li, Z.; Hu, H.; Ma, T.; Lin, H.; Liu, J.; Zhang, J.; Huang, F.; Yu, D.; Yan, H. J. Mater. Chem. A., 2015, 3, 13632.
4. Yan, Q.; Zhao, D. Org. Lett., 2009, 11, 3426.
5. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, revision A.1; Gaussian, Inc.: Wallingford, CT, 2009.
