## **Supporting Information**

## Blue and White Solution-Processed TADF-OLEDs with Over 20% EQE, Low Driving Voltages

## and Moderate Efficiency Decline based on Interfacial Exciplex Hosts

Zeyu He,<sup>a</sup> Chengyu Wang,<sup>a</sup> Juewen Zhao,<sup>a</sup> Xiaoyang Du,<sup>a</sup> Haoyu Yang,<sup>ab</sup> Pingli Zhong,<sup>ab</sup> Caijun

Zheng,\*, a Hui Lin a, Silu Tao,\*, a and Xiaohong Zhang b

<sup>a</sup>School of Optoelectronic Science and Engineering, University of Electronic Science and

Technology of China, Chengdu 610054 (P.R. China)

<sup>b</sup>Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-

Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123 (P.R.

China)

## **RESULTS DETAILS**

|              | PL (nm) | FWHM (nm) | S <sub>1</sub> (eV) | T <sub>1</sub> (eV) | ΔE <sub>st</sub> (meV) |
|--------------|---------|-----------|---------------------|---------------------|------------------------|
| mCP:PO-T2T   | 471     | 79        | 2.96                | 2.92                | 40                     |
| m-CBP:PO-T2T | 475     | 87        | 2.95                | 2.92                | 30                     |
| CDBP:PO-T2T  | 476     | 85        | 2.96                | 2.91                | 50                     |

**Table S1** optical characters of single molecules and exciplexes.

Table S2 Optimized blue, red and white OLEDs Performance based on CDBP/PO-T2T host.

| Device | V <sub>on</sub><br>(V) | V <sub>100</sub> ª<br>(V) | V <sub>1000</sub> <sup>b</sup><br>(V) | CE <sub>max</sub><br>(cd/A) | PE <sub>max</sub><br>(Im/W) | EQE <sub>max</sub><br>(%) | EQE <sub>100</sub> <sup>c</sup><br>(%) | EQE <sub>1000</sub> d<br>(%) |
|--------|------------------------|---------------------------|---------------------------------------|-----------------------------|-----------------------------|---------------------------|----------------------------------------|------------------------------|
| blue   | 3.6                    | 4.4                       | 5.8                                   | 56.6                        | 46.7                        | 21.0                      | 20.2                                   | 13.6                         |
| red    | 4.3                    | 5.0                       | 6.8                                   | 18.9                        | 11.9                        | 13.5                      | 13.0                                   | 9.3                          |
| white  | 4.1                    | 4.8                       | 5.8                                   | 47.6                        | 31.3                        | 20.8                      | 20.2                                   | 11.8                         |

<sup>a</sup> Voltage at 100 cd/m<sup>2</sup>; <sup>b</sup> Voltage at 1000 cd/m<sup>2</sup>; <sup>c</sup> EQE at brightness of 100 cd/m<sup>2</sup>; <sup>d</sup> EQE at brightness of 1000 cd/m<sup>2</sup> The Optimized doping ratio of blue OLED is 25% 4CzFCN. The Optimized doping ratio of red OLED is 20% Ir(MDQ)<sub>2</sub>acac. The Optimized doping ratio of white OLED is 25% 4CzFCN and 0.6% Ir(MDQ)<sub>2</sub>acac.



Figure S1. Molecular structures of other materials in this work.



**Figure S2**. (a) Transient fluorescence decays of three exciplexes mixed films at 300 K; (b) EL spectra of the OLEDs using three interfacial exciplexes as the emitter (Device structures: ITO/PEDOT:PSS (30 nm)/hole-type host (30 nm)/PO-T2T (50 nm)/LiF (0.8 nm)/Al (100 nm)); (c) Cyclic voltammetry curves of 4CzFCN; (d) Current density–Voltage curves of blue OLEDs based on CDBP/PO-T2T host with different 4CzFCN doping concentration.



**Figure S3**. (a)Phosphorescence spectrum of Ir(MDQ)<sub>2</sub>acac and 4CzFCN in solution-processed solid films at 77 K; EL characteristics of blue, red and white OLEDs based on CDBP/PO-T2T interfacial exciplex host: (b) current density-voltage-luminance curves, (c) EQE-luminance curves and (d) EL spectra.