Electronic supplementary information

A bis(diketopyrrolopyrrole) dimer-containing ligand in platinum(II) polyyne oligomer exhibiting ultrafast photoinduced electron transfer with PCBM and solar cell properties

Mélodie Nos, [†]^a Gabriel Marineau-Plante, [†]^b Di Gao,^a Muriel Durandetti,^c Julie Hardouin,^{d,e} Paul-Ludovic Karsenti, ^b Gaurav Gupta,^f Ganesh D. Sharma,^{*f} Pierre D. Harvey,^{* b} Cyprien Lemouchi,^{*a} Loïc Le Pluart^{*a}

a NORMANDIE UNIV, ENSICAEN, UNICAEN, CNRS, LCMT, 14000 CAEN, FRANCE

b Département de chimie, Université de Sherbrooke, Sherbrooke, PQ, Canada J1K 2R1

c Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France

d Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France

e PISSARO Proteomic Facility, IRIB, F-76820 Mont-Saint-Aignan, France

f Department of Physics, LNM Institute of Information Technology (Deemed to be University), Jamdoli 302017 Jaipur, India

Email:

^acyprien.lemouchi@ensicaen.fr, loic.le_pluart@ensicaen.fr ^b Pierre.Harvey@USherbrooke.ca

Contents

1.Ligands synthesis and characterization	S2
2. Optical Properties of the ligands	S11
3. Metallooligomer characterization	S12
4. GPC analysis	S15
5. MALDI-TOF of the metallooligomers P1 and P4	S16
6. Thermogravimetric analysis (TGA)	S17
7. The absorption spectra of P1 and P4	S17
8. DFT and TD-DFT computations of the ligands Ln	S18
9. DFT and TD-DFT computations of the metallooligomers Pn	S29
10. Emission spectroscopy	S38

1. Ligands synthesis and characterization

Synthetic route to the diethynyl ligand L1

Scheme S1 : synthetic route for the L1 preparation

1

3,6-Bis(thiophen-2-yl)-2H,5H-pyrrolo[3,4-c]pyrrole-1,4-dione

The procedure was inspired from the literature, C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee, J. M. J. Fréchet, J. Am. Chem. Soc. **2010**, 132, 15547. In a flame-dried 250 ml bicol, sodium metal (Na (0)) (2.4 g, 104.39 mmol) was slowly added to the 2-methylbutan-2-ol (100 mL) at 120°C. The mixture was stirred at 120 °C until complete dissolution of Na(metal). The temperature was decreased to 90 °C and the 2-thiophenecarbonitrile (8.52 g, 78.06 mmol) was added in one portion, affording a brown coloration of the reaction mixture. Afterwards, a solution of diethyl succinate (6.18 g, 35.48 mmol) was added dropwise and the mixture was stirred at 120 °C overnight. The solution turned progressively to dark purple. After cooling to room temperature, the mixture was poured into dilute HCl (1N, 100 mL) and was stirred vigorously for 1h at 0°C. The precipitated deep purple solid **1** was collected by filtration under vacuum. The solid was washed several times with methanol and dried under vacuum to give a purple powder (5.75 g, 19.14 mmol, 54 % yield) and used without further purification.¹H NMR (400 MHz, DMSO) δ (ppm): 11.24 (s, 1H), 8.23 (s br., 1H), 7.96 (br., 1H), 7.30 (s br., 1H). ¹³C NMR (400 MHz, DMSO) δ (ppm): 161.61, 136.14, 132.63, 131.25, 130.78, 128.69, 108.54.

2

2,5-Dinonyl-3,6-bis(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4-dione

The procedure was inspired from the literature, S. Jung Park, J. E. Jung, M. K. Kang, Y. H. Na, H. H. Song, J. W. Kang, N. S. Baek, T.-D. Kim, Synthetic Metals, **2015**, 203, 221. In a 250 mL flame-dried Schlenk, **1** (1.4 g, 4.67 mmol), anhydrous potassium carbonate (2.58 g, 18.67 mmol) and 18-crown-6 (cat., 5 mg) were added in freshly distilled DMF (70 mL). The mixture was stirred at 100 °C for 1 h under argon atmosphere. 1-bromononane (2.89 g, 13.95 mmol)

was added dropwise and the reaction mixture was stirred at 100 °C for 36 h, monitored in TLC ($R_f = 0.6$, using CHCl₃ as eluent). When the reaction was complete, the reaction mixture was cooled to room temperature and extracted with CH₂Cl₂ (200 mL). The isolated organic layer was washed with brine (4 x 100 mL), dried over MgSO₄, filtered and evaporated under reduced pressure. The crude material was purified by chromatography using silica gel with CHCl₃ as eluent to afford **2** as a purple solid (1.80 g, 3.26 mmol, 70 % yield). ¹H NMR (500 MHz, CDCl₃) δ (ppm): 8.86 (dd, 2H, *J* = 4.0 Hz, *J* = 1.0 Hz), 7.57 (dd, 2H, *J* = 5.0 Hz, *J* = 1.1 Hz), 7.21 (t, 2H, *J* = 4.5 Hz), 4.0 (t, 4H, *J* = 8.0 Hz), 1.74-1.68 (m, 4H), 1.41-1.36 (m, 4H), 1.34-1.29 (m, 4H), 1.27-1.23 (m, 19H), 0.84 (m, 6H). ¹³C NMR (500 MHz, CDCl₃) δ (ppm): 161.59, 140.42, 135.50, 130.90, 130.02, 128.84, 107.91, 42.48, 32.10, 30.22, 29.96, 29.74, 29.49, 27.13, 22.92, 14.37. IR (cm⁻¹): v = 3069 (v, C-H aromatic), 2918 and 2848 (w, v (C-H)), 2145, 1655 (w, v(C=O)). MS-ASAP-TOF (*m*/*z*): calc. for C₃₂H₄₄N₂O₂S₂ (**2**) [M+H]⁺, m/z = 553.28 ; measured [M+H]⁺ m/z = 553.29. T _{m.p} (°C) = 154.

3

3,6-bis-(5-bromothiophen-2-yl)-2,5-dinonyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione

The procedure was inspired from the literature, C. Wang, Y. Qin, Y. Sun, Y-S. Guan, W. Xu, D. Zhu, *ACS Appl. Mater. Interfaces*, **2015**, *7*, 15978. In a 100 mL round bottom flask wrapped with an aluminum foil, **2** (735.0 mg, 1.33 mmol) was dissolved in CH₂Cl₂ (50 mL) and *N*-bromosuccinimide (521.0 mg, 2.93 mmol) and was added in a single portion. The mixture was stirred at room temperature for 7 hrs and monitored by TLC (R_r =0.5 using CH₂Cl₂/pentane: 70/30). The product was precipitated after addition of methanol (50 mL) to the concentrated reaction mixture. The dark purple solid **3** (708.22 mg, 1.00 mmol, 75% yield) was isolated after filtration, washed with cold methanol (2 × 200 mL) and dried under vacuum. ¹H NMR (400 MHz, CDCl₃) δ (ppm) : 8.63 (d, 2H, *J* = 4.3 Hz), 7.23 (d, 2H, *J* = 4.3 Hz), 3.93 (t, 4H, *J* = 7.9 Hz), 1.69 (m, 4H), 1.41-1. 36 (m, 4H), 1.34-1.31 (m, 5 H), 1.28-1.24 (m, 20 H), 0.86 (m, 7H). ¹³C NMR (500 MHz, CDCl₃) δ (ppm): 161.06, 139.00, 135.24, 131.62, 131.19, 119.05, 107.95, 31.81, 29.95, 29.40, 29.16, 26.80, 22.61, 14.01. IR (cm⁻¹): v = 3092 (v, C-H aromatic), 2916 and 2.851 (w, v (C-H)), 1660 (w, v(C=O)) and 1558. MALDI-TOF (dithranol) calc. for C₃₂H₄₂Br₂N₂O₂S₂ (**3**) [M^{cs+1}], m/z = 708.11; measured [M^{cs+1}] m/z = 708.10; T_{m.p} (°C) =175.

Synthetic route to the diethynyl ligand L4

Scheme S2: synthetic route for the L4 preparation

4

3-(5-bromothiophen-2-yl)-2,5-dinonyl-6-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-

1,4-dione

The procedure was inspired from the literature, P.-Y. Ho, B. Zheng, D. Mark, W.-Y. Wong, D. W. McCamant, R. Eisenberg, Inorg. Chem. 2016, 55, 8348. In a 250 mL round bottom flask wrapped with an aluminum foil, 2 (871.0 mg, 1.58 mmol) was dissolved in CH₂Cl₂ (50 mL). Nbromosuccinimide (281.20 mg, 1.58 mmol) was added in a single portion. The mixture was stirred at room temperature for 6.5 hrs. The product was precipitated upon addition of methanol to the concentrated reaction mixture. The dark purple solid 4 (697.88 mg, 1.10 mmol, 70% yield) was isolated after filtration, washed with cold methanol (2 × 200 mL) and dried under vacuum. ¹H NMR (500 MHz, CDCl₃) δ (ppm): 8.91 (d, 1H, J = 4.0 Hz), 8.64 (d, 1H, J = 4.2 Hz), 7.63 (d, 1H, J = 4.7 Hz), 7.26 (t, 1H, J = 4.5 Hz), 7.20 (d, 1H, J = 4.3 Hz), 4.03 (t, 2H, J = 7.8 Hz), 3.96 (t, 2H, J = 7.7 Hz), 1.74-1.65 (m, 4H), 1.41-1. 34 (m, 4H), 1.33-1.23 (m, 23H), 0.84 (m, 6H). ¹³C NMR (500 MHz, CDCl₃) δ (ppm): 161.30, 161.14, 140.48, 138.47, 135.51, 135.08, 131.65, 131.57, 131.23, 130.96, 129.73, 128.69, 118.77, 107.97, 101.61, 42.29, 42.27, 31.85, 30.01, 29.96, 29.48, 29.45, 29.23, 26.88, 26.84, 22.67, 14.11. IR (cm⁻¹): v = 3091 (v, C-H aromatic), 2918 and 2851 (w, v (C-H)), 1658 (w, v(C=O)). MS-ASAP-TOF (m/z) calc. for $C_{32}H_{43}BrN_2O_2S_2$ (4), m/z = 630.19 [M^{c3}]⁺, 632.19[M^{c3}+2]⁺, measured m/z = 630.20 and 632.20 ; T_{m.p} (°C) =172.

6,6'-([2,2'-bithiophene]-5,5'-diyl)bis(2,5-dinonyl-3-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4c]pyrrole-1,4-dione)

The procedure was inspired from the literature, A. Riano, P. Mayorga Burrezo, M. J. Mancheno, A. Timalsina, J. Smith, A. Facchetti, T. J. Marks, J. T. Lopez Navarrete, b J. L. Segura, J. Casado, R. Ponce Ortiz, J. Mater. Chem. C, 2014, 2, 6376. In a flame-dried schlenk, the solution of 4 (2.05 g, 3.24 mmol) and hexabutyldistannane (2.69 g, 4.64 mmol) in anhydrous toluene (60 mL) was degassed with an argon stream before adding $Pd(PPh_3)_2Cl_2$ (210.56 mg, 0.30 mmol, 10 mol%) and PPh₃ (157.36 mg, 0.60 mmol, 20 mol %). The mixture was refluxed overnight under argon and monitored by TLC ($R_f = 0.40$, using CH_2Cl_2 /pentane: 40/60). After cooling, the solvent was evaporated under reduced pressure. The resulting solid was extracted from CH_2Cl_2 /methanol: 50 mL/100 mL to deliver the product **5** as a dark purple solid (2.0 g, 1.81) mmol, 56 % yield) after a filtration and a washing with methanol. ¹H NMR (500 MHz, CDCl₃, δ (ppm) : 8.91-8.90 (m, 4H), 7.62 (d, 2H, J = 4.8 Hz), 7.43 (d, 2H, J = 4.1 Hz), 7.29 (t, 2H, J = 4.5 Hz), 4.08 (m, 8 H), 1.78-1.72 (m, 8 H), 1.45-1.40 (m, 8 H), 1.36-1.33 (m, 8H), 1.27-1.24 (m, 38H*), 0.87 (t, 12H*) *: nonyl side chains on DPP + supplementary hydrogens from aliphatic *residue such as pentane*. ¹³C NMR (500 MHz, CDCl₃, δ (ppm): 161.27, 161.25, 140.93, 140.20, 138.73, 136.44, 135.60, 135.27, 130.99, 129.75, 128.62, 126.29, 108.71, 107.94, 42.33, 42.26, 31.86, 30.09, 29.98, 29.51, 29.50, 29.26, 29.23, 26.92, 26.90, 22.67, 14.12. IR (cm⁻¹): v = 3083 (v, C-H aromatic), 2922 and 2850 (w, v (C-H)), 1662 (w, v(C=O)). MALDI-TOF (dithranol) calc. for $C_{64}H_{86}N_4O_4S_4$ (5) [M+H]⁺, m/z = 1103.55 ; measured [M+H]⁺ m/z = 1103.56 ; T_{m,p} (°C) = 228.

6

6,6'-([2,2'-bithiophene]-5,5'-diyl)bis(3-(5-bromothiophen-2-yl)-2,5-dihydropyrrolo[3,4c]pyrrole-1,4-dione)

The procedure was inspired from the literature, A. Riano, P. Mayorga Burrezo, M. J. Mancheno, A. Timalsina, J. Smith, A. Facchetti, T. J. Marks, J. T. Lopez Navarrete, J. L. Segura, J. Casado, R. Ponce Ortiz, J. Mater. Chem. C, **2014**, 2, 6376. In a 50 mL round bottom flask wrapped with an aluminum foil, **5** (208.0 mg, 0.19 mmol) was dissolved in CH_2Cl_2 (30 mL). *N*-bromosuccinimide (84.0 mg, 0.47 mmol, 2.5 eq.) was added in a single portion. The mixture was stirred at room temperature for 9 hrs and was monitored by TLC ($R_f = 0.4$, using CH_2Cl_2 /pentane 40/60). The reaction mixture was evaporated and the resulting solid was extracted in methanol. The solid was isolated after filtration and washed with cold methanol (2 × 100 mL) and dried under vacuum to give a dark blue solid (173.0 mg). The solid consisted of a mixture between the mono- and the di-brominated product **6'** and **6**. Since the separation of those products was very difficult. The crude material was directly engaged in the next step. MALDI-tof (dithranol) calc. for $C_{64}H_{84}Br_2N_4O_4S_4$ (**6**) m/z = 1258.37 [M^{cs}]⁺, 1260.37[M^{cs}+2]⁺, 1262.37 [M^{cs}+4]⁺ measured m/z = 1258.55, 1260.55 and 1262.55 ; calc. for $C_{64}H_{85}BrN_4O_4S_4$ (**6'**), m/z = 1180.46 [M^{cs+}], 1182.46 [M^{cs+}2]⁺; measured m/z = 1180.64 and 1182.64

Figure S1: ¹H and ¹³C NMR spectra of L1 in CDCl₃

Figure S2: High-resolution ESI-MS (HR-MS) of L1

Figure S3: IR ATR spectrum of L1

Figure S4: ¹H and ¹³C NMR spectra of L4 in CDCl₃

Figure S5: High-resolution ESI-MS (HR-MS) of L4

Figure S6: IR ATR spectrum of L4

2. Optical Properties of the ligands

Absorption spectra of the ligands L1 and L4 in $CH_2Cl_2,$ molar extinction coefficient determination (ϵ_λ)

Figure S7: Absorption spectra of the ligand **L1** in CH_2Cl_2 at different molar concentrations to calculate the molar extinction coefficient (ϵ_{λ})

Figure S8: Absorption spectra of the Ligand **L4** in CH_2Cl_2 at different molar concentrations to calculate the molar extinction coefficient (ε_{λ}).

3. Metallooligomer characterization

Metallooligomers ¹H and ³¹P NMR spectra

Figure S9: ¹H and ³¹P NMR spectra of the metallooligomers P1 in CDCl₃

Figure S10: ¹H and ³¹P NMR spectra of the metallooligomers P4 in CD₂Cl₂

Figure S11: ¹H chemical shift's comparison between ligand L1 and the metallooligomers P1 in CD_2Cl_2

Figure S12: ¹H chemical shift comparison between ligand L4 and metallooligomers P4 in CD₂Cl₂

IR ATR spectra of the metallooligomers

Figure S13: IR ATR spectrum of P1

Figure S14: IR ATR spectrum of P4

4. GPC analysis

Number- and weight-average molar mass (M_n and M_w respectively) as well as the dispersity (D) were determined by gel permeation chromatography (GPC) against polystyrene standards in THF with a flow rate of 1 mL/min

Figure S15: GPC chromatograms of the metallooligomers P1 and P4

5. MALDI-TOF of the metallooligomers P1 and P4

The analysis of the metallooligomers **P1** and **P4** by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) were performed with the 2-[(2E)-3-(4-tert-Butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) matrix, in solution with a concentration of 10 mg mL⁻¹ in methylene dichloride following the literature procedure¹.

Figure S16: MALDI-TOF spectra of P1

Figure S17: MALDI-TOF spectra of P4

¹ (a) M. F. Wyatt, B. K. Stein, A. G. Brenton, *Anal. Chem.* **2006**, 78, 199. (b) J. Mei, K. Ogawa, Y.-G. Kim, N. C. Heston, D. J. Arenas, Z. Nasrollahi, T. D. McCarley, D. B. Tanner, J. R. Reynolds, K. S. Schanze, *Applied Mat Interfaces*, **2009**, 1,150

6. Thermogravimetric analysis (TGA)

Figure S18: Thermogravimetric analysis (TGA) of **P1** and **P4** measuring at a heating rate of 10° C.min⁻¹ under a 80 mL/min N₂(g) flow. a: the decomposition onset was defined by a 5 wt% loss.

7. The absorption spectra of P1 and P4

Figure S19: Zoom of the absorption spectra of **P1** and **P4** in CH_2Cl_2 (solid line) as spin coated films on a quartz plate (dashed line). The film thicknesses were 47 and 38 nm, respectively, for **P1** and **P4**.

8. DFT and TD-DFT computations of the ligands Ln

Figure S20: Geometry optimization of **L1** (top) and **L4** (bottom; the SiMe₃ groups have been replaced by H to save computation time); C, grey; H, white; S, yellow; N, blue, O, red).

Figure S21: Representations of the frontier MOs for L1 (energy in eV).

Table S1: Relative atomic contributions (%) of the various fragments to the frontier MOs of **L1**.

Fragments	H-4	H-3	H-2	H-1	номо	LUMO	L+1	L+2	L+3	L+4
DPP	29.9	1.8	36.8	55.1	27.6	40.5	63.4	57.5	36.0	76.4
Thiophenes	68.5	98.2	42.4	15.9	66.2	52.5	24.2	27.9	53.9	7.2
Ethynyl	1.6	0.1	20.8	29.0	6.2	7.0	12.4	14.6	10.1	16.4

Table S2: Calculated position (λ), oscillator strength (f) and major contributions of the first 100 singlet-singlet electronic transitions for **L1**.

λ (nm)	f	Major contributions
535.4	0.6759	HOMO→LUMO (101%)
383.9	0	H-3→LUMO (14%), H-1→LUMO (18%), HOMO→L+1 (67%)
368.6	0	H-3→LUMO (82%)
356.1	0	H-4→LUMO (87%)
346.5	0.4289	H-2→LUMO (90%)
331.3	0.0001	H-1→LUMO (73%), HOMO→L+1 (23%)
324.4	0.0038	H-7→LUMO (49%), H-5→LUMO (43%)
299.3	0.0583	H-7→LUMO (37%), H-5→LUMO (36%), HOMO→L+2 (20%)
297.7	0.0015	H-6→LUMO (91%)
286.9	0.3424	H-5→LUMO (18%), HOMO→L+2 (65%)
273.3	0.0002	H-8→LUMO (87%)
272.9	0.0001	H-9→LUMO (87%)
257.4	0	H-2→L+1 (52%), HOMO→L+3 (43%)
256.6	0.1626	H-1→L+1 (95%)
249.9	0.0005	H-2→L+1 (26%), HOMO→L+3 (30%), HOMO→L+4 (32%)
249.5	0.0007	H-2→L+1 (17%), HOMO→L+3 (14%), HOMO→L+4 (58%)
248.5	0.0747	H-3→L+1 (91%)
247.1	0.0021	H-4→L+1 (55%), HOMO→L+5 (32%)
246.4	0.0067	H-4→L+1 (32%), HOMO→L+5 (55%)
233.7	0.0434	H-10→LUMO (87%)
233.4	0	H-7→L+1 (21%), H-5→L+1 (49%), HOMO→L+6 (17%)
232.7	0	HOMO→L+6 (68%)
232.0	0.0014	HOMO→L+7 (84%)
226.6	0	H-11→LUMO (55%), H-7→L+1 (32%)
225.3	0.0529	H-6→L+1 (78%)
224.4	0.0016	H-11→LUMO (23%), H-7→L+1 (24%), H-5→L+1 (17%), H-1→L+2 (23%)
217.0	0.0002	H-3→L+2 (88%)
215.8	0.0033	H-5→L+1 (13%), H-1→L+2 (58%)
215.5	0.0157	H-2→L+2 (72%), HOMO→L+8 (17%)
215.0	0	H-9→LUMO (11%), H-8→L+1 (51%), H-4→L+2 (19%)
214.1	0.0043	H-9→L+1 (64%), H-8→LUMO (11%), H-8→L+2 (11%)
210.0	0.0001	H-8→L+1 (18%), H-4→L+2 (61%)
208.6	0.1459	HOMO→L+8 (63%)

206.1	0.0016	H-12→LUMO (10%), HOMO→L+9 (67%)
203.5	0.0167	H-7→L+2 (17%), H-5→L+2 (16%), H-2→L+5 (12%), H-1→L+4 (17%)
203.0	0.0003	H-2→L+4 (33%), H-1→L+5 (37%)
202.3	0.0304	H-7→L+2 (12%), H-2→L+5 (21%), H-1→L+4 (28%)
200.7	0.0013	H-13→LUMO (76%)
198.3	0.0639	H-15→LUMO (32%), H-14→LUMO (25%), H-5→L+2 (26%)
195.7	0.0459	H-15→LUMO (11%), H-7→L+2 (23%), H-5→L+2 (11%), H-1→L+3 (28%)
194.3	0.0008	H-6→L+2 (44%), H-2→L+3 (25%)
193.4	0.0006	H-13→LUMO (10%), H-12→LUMO (46%), H-6→L+2 (23%)
192.3	0.0047	H-2→L+7 (27%), H-1→L+6 (36%)
192.2	0	H-2→L+6 (29%), H-1→L+7 (35%)
189.8	0	H-10→L+1 (82%)
189.6	0.0885	H-15→LUMO (14), H-14→LUMO (13), H-5→L+2 (10%), H-1→L+3 (38%)
189.1	0.0856	H-15→LUMO (17%), H-14→LUMO (31%), H-1→L+3 (12%)
188.3	0.0011	H-6→L+5 (14%), H-5→L+4 (22%), H-2→L+3 (17%)
187.7	0.0025	H-6→L+4 (19%), H-5→L+5 (22%), H-1→L+6 (10%)
186.7	0.0015	H-6→L+2 (10%), H-2→L+3 (39%)
186.1	0.0016	H-11→L+1 (74%)
184.6	0	H-16→LUMO (86%)
184.1	0.0007	H-7→L+2 (25%), H-4→L+3 (61%)
183.4	0.1803	H-3→L+3 (83%)
181.6	0.0001	H-9→L+2 (61%), H-8→L+1 (15%), H-8→L+3 (10%)
181.6	0.0012	H-9→L+1 (17%), H-8→L+2 (63%)
178.8	0.0143	H-3→L+4 (70%), H-3→L+6 (10%)
178.2	0	H-7→L+3 (31%), H-5→L+3 (38%)
177.8	0	H-3→L+5 (14%), H-2→L+4 (37%), H-1→L+5 (33%)
177.1	0.0459	H-3→L+4 (13%), H-2→L+5 (42%), H-1→L+4 (30%)
176.3	0.0004	H-3→L+5 (66%), H-3→L+7 (13%)
174.5	0.1236	H-4→L+4 (46%)
1/3.6	0	H-/→L+3 (15%), H-4→L+5 (30%)
470.4	•	$H-6 \rightarrow L+5 (15\%), H-5 \rightarrow L+3 (11\%), H-5 \rightarrow L+6 (10\%), H-4 \rightarrow L+5 (14\%), H-4 $
173.1	0	$4 \rightarrow L + 7$ (20%)
172.0	0.0005	$H-b \rightarrow L+3$ (19%), $H-b \rightarrow L+4$ (11%), $H-b \rightarrow L+b$ (13%), $H-5 \rightarrow L+7$ (22%), $H-5 \rightarrow L+7$ (22\%) (22\%) (22\%) (22\%)
172.9	0.0065	$4 \rightarrow L+0$ (11%)
172.1		$H-0 \rightarrow L+7 (10\%), H-5 \rightarrow L+6 (17\%), H-1 \rightarrow L+8 (11\%)$
172.0	0.0008	
1/1./	0.0514	
160 7	0.0002	
160.6	0.048	$ -10^{-}L^{+}2(12^{-}0), -0^{-}L^{+}3(20^{-}0), -2^{-}L^{+}0(10^{-}0) $
160 2		H_2→I+6 (27%) H_2→I+7 (21%) H 1→I+6 (22%)
160 1		H-3-)+7 (10%) H-3-)+6 (37%) H-1-)+7 (32%)
168 /	0.0001	H-19→[[]M∩ (11%) H-17→[[]M∩ (72%)
167 S	0.0003	$H_{18} \rightarrow IIIMO (64\%) HOMO \rightarrow I + 12 (12\%)$
167 8	0.0002	$H_{-3} \rightarrow I + 6 (53\%) H_{-2} \rightarrow I + 7 (18\%) H_{-1} \rightarrow I + 6 (13\%)$
167.4	0	$H-3\rightarrow L+7$ (51%), $H-2\rightarrow L+6$ (12%), $HOMO\rightarrow L+12$ (10%)
166.9	0.106	$H-12 \rightarrow L+1$ (11%), $H-10 \rightarrow L+2$ (36%), $H-2 \rightarrow L+8$ (22%), $H-1 \rightarrow I+9$ (15%)

166.7	0	H-18→LUMO (10%), H-3→L+7 (14%), HOMO→L+12 (63%)
166.0	0.0009	H-11→L+2 (14%), H-3→L+8 (60%)
164.8	0.0022	H-11→L+2 (30%), H-3→L+8 (29%), H-1→L+8 (17%)
164.7	0.0018	H-19→LUMO (54%), H-17→LUMO (15%), H-13→L+1 (13%)
164.2	0.0001	H-19→LUMO (12%), H-13→L+1 (27%), H-12→L+1 (31%)
163.7	0.0149	H-4→L+4 (15%), H-4→L+6 (27%), HOMO→L+13 (13%)
163.5	0	H-7→L+4 (15%), H-5→L+4 (20%), H-4→L+5 (33%), H-4→L+7 (10%)
162.9	0.0192	H-12→L+1 (12%), H-5→L+5 (10%), HOMO→L+13 (26%)
162.8	0.0079	H-13→L+1 (14%), H-12→L+1 (21%), H-1→L+9 (12%)
162.5	0.0015	H-15→L+1 (31%), H-14→L+1 (36%)
162.1	0.0004	H-7→L+4 (16%), H-4→L+7 (42%)
161.8	0.1279	H-7→L+5 (15%), H-5→L+5 (17%), H-4→L+6 (21%), HOMO→L+13 (12%)
161.5	0	H-8→L+3 (10%), H-4→L+8 (53%)
161.3	0.0092	H-21→LUMO (49%), H-16→L+1 (10%)
160.4	0.0001	H-2→L+9 (32%), H-1→L+8 (12%)
160.2	0.0272	H-9→L+3 (39%), H-8→L+2 (11%)
159.8	0.0576	H-3→L+9 (20%), H-1→L+9 (19%), HOMO→L+13 (19%)
159.7	0.0001	H-8→L+3 (32%), H-4→L+8 (13%)
159.6	0.0351	H-9→L+4 (12%), H-8→L+5 (10%)
159.0	0.0002	H-8→L+3 (15%), H-6→L+5 (13%), H-2→L+9 (13%)
158.9	0.1234	H-3→L+9 (14%)
158.7	0.0001	H-15→L+1 (13%), H-7→L+4 (10%), H-6→L+5 (17%)

Figure S22: Representations of the frontier MOs for L4 (energy in eV).

Table S3: Relative atomic contributions (%) of the various fragments to the frontier MOs ofL4.

Fragments	H-4	H-3	H-2	H-1	НОМО	LUMO	L+1	L+2	L+3	L+4
DPP	39.6	44.2	64.2	25.0	36.8	47.2	41.6	68.2	58.9	61.1
Thiophenes	41.3	31.7	30.5	71.7	60.3	49.9	53.9	25.7	32.5	30.9
Ethynyl	19.2	24.1	5.2	3.3	2.9	2.8	4.5	6.1	8.6	8.0

Table S4: Calculated position, oscillator strength (f) and major contributions of the first 100 singlet-singlet electronic transitions for **L4**.

λ (nm)	f	Major contributions
669.2	1.7075	HOMO→LUMO (100%)
579.5	0	H-1→LUMO (78%), HOMO→L+1 (20%)
513.2	0	H-1→LUMO (21%), HOMO→L+1 (79%)
466.3	0.177	H-1→L+1 (97%)
410.7	0.0322	H-2→LUMO (25%), HOMO→L+2 (69%)
		H-6→LUMO (13%), H-4→LUMO (17%), H-2→LUMO (49%),
379.7	0.3429	HOMO→L+2 (11%)
378.3	0	H-6→L+1 (17%), H-5→LUMO (57%), H-1→L+2 (14%)
374.4	0.0877	H-6→LUMO (61%), H-5→L+1 (17%)
		H-5→LUMO (17%), H-3→LUMO (27%), H-1→L+2 (27%), HOMO→L+3
369.7	0	(13%)
360.1	0	H-8→L+1 (18%), H-7→LUMO (61%)
359.6	0.0376	H-8→LUMO (53%), H-7→L+1 (18%), H-4→LUMO (12%)
355.5	0.0003	H-3→LUMO (33%), H-1→L+2 (38%), HOMO→L+3 (10%)
353.6	0.1514	H-8→LUMO (13%), H-4→LUMO (50%), H-2→LUMO (15%)
337.8	0.0006	H-3→LUMO (24%), HOMO→L+3 (56%)
329.0	0	H-2→L+1 (71%)
327.5	0.0001	H-14→L+1 (10%), H-13→LUMO (38%), H-9→LUMO (21%)
327.4	0.0078	H-14→LUMO (31%), H-13→L+1 (14%), H-10→LUMO (28%)
316.3	0.0456	H-4→LUMO (11%), H-3→L+1 (25%), H-1→L+3 (46%)
313.7	0.0004	H-11→LUMO (30%), H-9→LUMO (46%)
310.6	0.0007	H-4→L+1 (81%)
309.1	0.2324	H-3→L+1 (56%), H-1→L+3 (35%)
304.7	0.0159	H-14→LUMO (17%), H-10→LUMO (35%), HOMO→L+4 (14%)
304.4	0.0011	H-13→LUMO (20%), H-11→LUMO (41%), H-9→LUMO (14%)
302.8	0.02	H-14→LUMO (10%), H-12→LUMO (61%)
301.8	0.006	H-6→LUMO (18%), H-5→L+1 (60%)
301.0	0	H-6→L+1 (70%), H-5→LUMO (21%)
294.3	0.4291	H-10→LUMO (10%), HOMO→L+4 (52%)
287.2	0.0081	H-8→LUMO (21%), H-7→L+1 (67%)
286.2	0	H-8→L+1 (64%), H-7→LUMO (21%)

280.1	0.0441	H-11→L+1 (11%), H-9→L+1 (74%)
279.8	0.002	H-15→LUMO (13%), H-1→L+4 (54%), HOMO→L+5 (16%)
276.1	0.0001	H-17→LUMO (64%), H-16→L+1 (23%)
276.0	0.0001	H-17→L+1 (23%), H-16→LUMO (65%)
273.5	0	H-15→LUMO (26%), H-12→L+1 (25%), H-10→L+1 (25%)
271.0	0.0693	H-2→L+2 (91%)
270.1	0	H-10→L+1 (23%), H-1→L+4 (27%), HOMO→L+5 (28%)
268.4	0.0082	H-11→L+1 (61%), H-10→LUMO (10%)
266.7	0	H-15→LUMO (24%), H-12→L+1 (49%)
		H-15→LUMO (22%), H-14→L+1 (13%), H-10→L+1 (16%), HOMO→L+5
264.6	0.0011	(28%)
262.1	0.0023	H-14→LUMO (11%), H-13→L+1 (38%), HOMO→L+6 (20%)
260.6	0.0008	H-14→L+1 (53%), H-13→LUMO (17%), H-10→L+1 (10%)
260.3	0.0035	H-13→L+1 (21%), H-4→L+2 (16%), HOMO→L+6 (20%)
257.2	0.0015	H-3→L+2 (86%)
256.4	0.0775	H-4→L+2 (50%), HOMO→L+7 (20%)
253.0	0.0188	H-4→L+2 (13%), H-1→L+5 (23%), HOMO→L+7 (36%)
250.7	0.0001	H-1→L+7 (19%), HOMO→L+8 (56%), HOMO→L+10 (10%)
		H-6→L+2 (13%), H-1→L+8 (22%), HOMO→L+7 (13%), HOMO→L+9
249.8	0.0085	(38%)
249.5	0.0605	H-6→L+2 (60%), HOMO→L+9 (13%)
248.9	0.001	H-5→L+2 (72%)
247.7	0.0001	H-1→L+9 (18%), HOMO→L+10 (54%)
245.9	0.0004	H-2→L+3 (79%)
244.6	0.0196	H-15→L+1 (17%), H-8→L+2 (21%), H-1→L+5 (18%), HOMO→L+6 (19%)
244.4	0	H-8→L+3 (12%), H-7→L+2 (66%)
243.5	0.0218	H-8→L+2 (48%), H-7→L+3 (10%)
241.1	0.109	H-15→L+1 (56%), H-1→L+5 (25%)
239.2	0	H-17→LUMO (30%), H-16→L+1 (56%)
239.2	0.002	H-17→L+1 (57%), H-16→LUMO (31%)
239.0	0	H-19→LUMO (16%), H-1→L+6 (45%), HOMO→L+11 (15%)
234.8	0.0262	H-18→LUMO (68%)
234.4	0	H-19→LUMO (34%), H-9→L+2 (26%)
		H-9→L+2 (12%), H-1→L+12 (17%), HOMO→L+12 (12%), HOMO→L+13
233.9	0.0001	(37%)
233.9	0.0014	H-1→L+13 (19%), HOMO→L+12 (43%), HOMO→L+13 (14%)
232.7	0	H-9→L+2 (24%), H-4→L+3 (40%)
232.3	0.0017	H-10→L+2 (25%), H-3→L+3 (39%)
		H-19→LUMO (13%), H-11→L+2 (28%), H-9→L+2 (15%), H-4→L+3
230.3	0.0008	(15%)
229.4	0.0002	H-13→L+2 (16%), H-11→L+2 (20%), H-1→L+7 (14%)
229.1	0.0072	H-14→L+2 (17%), H-10→L+2 (16%), H-3→L+3 (31%)
227.3	0	H-13→L+2 (18%), H-6→L+3 (13%), H-1→L+7 (19%)
227.0	0.0028	H-6→L+4 (13%), H-5→L+3 (57%)
226.8	0	H-6→L+3 (48%), H-5→L+4 (12%), H-1→L+7 (13%)
225.2	0.0546	$H-14 \rightarrow L+2$ (12%), $H-12 \rightarrow L+2$ (33%), $H-5 \rightarrow L+3$ (11%), $H-2 \rightarrow L+4$ (18%)
224.7	0.0411	H-14→L+2 (20%), H-12→L+2 (19%), H-10→L+2 (20%)

224.5	0.0009	H-1→L+6 (18%), HOMO→L+11 (37%)
224.0	0.0035	H-13→L+2 (24%), H-11→L+2 (25%), HOMO→L+11 (11%)
223.7	0.0017	H-1→L+10 (72%)
220.5	0.0174	H-7→L+3 (24%), H-2→L+4 (36%)
220.1	0.0003	H-8→L+3 (48%), H-7→L+2 (10%), H-7→L+4 (14%)
219.4	0.0024	H-14→L+2 (21%), H-7→L+3 (30%), H-2→L+4 (19%)
217.2	0	H-1→L+7 (18%), H-1→L+9 (42%), HOMO→L+8 (32%)
217.2	0.0013	H-1→L+8 (54%), HOMO→L+7 (10%), HOMO→L+9 (23%)
214.3	0.1788	H-1→L+11 (66%)
213.5	0.0001	H-18→L+1 (28%), H-3→L+4 (19%)
213.3	0.0118	H-19→L+1 (13%), H-9→L+3 (26%), H-4→L+4 (15%)
		H-21→LUMO (10%), H-18→L+1 (11%), H-17→L+2 (11%),
213.2	0.0001	HOMO→L+15 (11%)
		H-20→LUMO (16%), H-9→L+3 (11%), H-4→L+4 (15%), HOMO→L+14
212.9	0.0012	(24%)
212.2	0.0061	H-17→L+1 (11%), H-17→L+3 (13%), H-16→L+2 (32%), H-9→L+3 (15%)
212.2	0.0006	H-18→L+1 (10%), H-17→L+2 (12%), H-3→L+4 (39%)
211.6	0.0005	H-19→L+1 (36%), H-4→L+4 (31%)
211.5	0.0012	H-21→LUMO (48%), H-17→L+2 (15%)
		H-19→L+1 (19%), H-11→L+3 (15%), H-9→L+3 (20%), HOMO→L+14
210.7	0.0403	(12%)
		H-21→LUMO (15%), H-18→L+1 (25%), H-10→L+3 (10%),
210.7	0.0007	HOMO→L+15 (14%)
208.4	0.005	H-20→LUMO (33%), H-11→L+3 (12%)
208.3	0.0001	H-15→L+2 (51%), H-5→L+4 (16%)
207.5	0.0004	H-12→L+3 (13%), H-10→L+3 (10%), H-5→L+4 (18%)
207.2	0.0489	H-6→L+4 (47%), H-5→L+3 (14%)
207.1	0	H-15→L+2 (19%), H-5→L+4 (31%)
206.3	0.0771	H-20→LUMO (18%), H-6→L+4 (13%), HOMO→L+14 (12%)
205.6	0	H-1→L+12 (35%), HOMO→L+13 (23%)
205.6	0.0144	H-1→L+13 (35%), HOMO→L+12 (22%)
204.7	0.0003	H-14→L+3 (17%) <i>,</i> H-12→L+3 (46%)

Figure S23: Bar graph reporting the calculated oscillator strength and calculated position of the electronic transitions calculated by TDDFT for **L1** (top) and **L4** (bottom; bar graph; f = computed oscillator strength. The simulated absorptions are generated using a Full width at half maximum (FWHM) of 3000 cm^{-1.}

Figure S24: Comparison of the calculated HOMO and LUMO energies (in eV) of the ligands using models **L1** and **L4**

9. DFT and TD-DFT computations of the metallooligomers Pn

DFT and TD-DFT calculation for model **P1.**

Figure S25: Representations of the frontier MOs for P1 (energy in eV).

Fragments	H-4	H-3	H-2	H-1	номо	LUMO	L+1	L+2	L+3	L+4
Thiophène	23.4	22.6	28.7	30.4	32.1	32.3	32.5	37.9	38.0	38.2
Platine	1.6	3.2	5.2	7.4	8.7	2.2	2.0	3.1	3.0	2.8
DPP	66.8	64.3	54.4	48.2	44.1	58.7	58.8	52.5	52.8	53.2
Ethynyl	8.1	9.9	11.8	14.0	15.1	6.8	6.8	6.6	6.2	5.7

Table S5: Relative atomic contributions (%) of the various fragments to the frontier MOs of **P1**.

Table S6: Calculated position (λ), oscillator strength (f) and major contributions of the first 100 singlet-singlet electronic transitions for **P1**.

λ(nm)	f	Major contributions
675.0	5.8501	H-1→L+1 (14%), HOMO→LUMO (30%), HOMO→L+2 (39%)
650.2	0.0158	H-1→LUMO (33%), HOMO→L+1 (44%)
622.4	0.092	H-1→L+1 (19%), HOMO→LUMO (24%), HOMO→L+2 (45%)
605.7	0.0086	H-1→LUMO (20%), H-1→L+2 (12%), HOMO→L+1 (52%)
602.8	0.5161	H-2→LUMO (15%), H-1→L+1 (33%), HOMO→LUMO (44%)
591.2	0.0068	H-1→LUMO (22%), H-1→L+2 (23%), HOMO→L+3 (46%)
573.8	0.4507	H-3→L+1 (11%), H-2→LUMO (29%), H-2→L+2 (12%), H-1→L+1 (29%)
570.9	0.0001	H-1→L+2 (45%), HOMO→L+3 (34%)
569.4	0.005	H-3→LUMO (10%), H-2→L+1 (53%), H-1→LUMO (19%)
564.5	0.2178	H-2→LUMO (24%), H-1→L+3 (11%), HOMO→L+4 (47%)
555.2	0.0102	H-4→L+1 (35%), H-3→LUMO (36%), H-2→L+1 (22%)
554.8	0.0128	H-2→LUMO (18%), H-2→L+2 (45%), H-1→L+3 (13%), HOMO→L+4 (18%)
551.0	0.3072	H-4→LUMO (28%), H-3→L+1 (29%), HOMO→L+4 (22%)
544.9	0.1545	H-2→L+2 (26%), H-2→L+4 (13%), H-1→L+3 (36%), HOMO→L+2 (13%)
535.8	0.0007	H-2→L+3 (40%), H-1→L+4 (50%)
520.8	0	H-2→L+3 (48%), H-1→L+4 (40%)
511.2	0.0757	H-2→L+4 (80%), H-1→L+3 (13%)
509.6	0.0062	H-4→LUMO (48%), H-3→L+1 (46%)
509.5	0.0007	H-4→L+1 (48%), H-3→LUMO (46%)
504.7	0.0107	H-4→L+3 (29%), H-3→L+2 (60%)
503.8	0.1229	H-4→L+2 (56%), H-3→L+3 (31%)
480.3	0.0125	H-4→L+2 (38%), H-4→L+4 (11%), H-3→L+3 (49%)
479.8	0.0021	H-4→L+3 (51%), H-3→L+2 (34%), H-3→L+4 (13%)
460.9	0.0003	H-4→L+3 (18%), H-3→L+4 (80%)
460.1	0.0057	H-4→L+4 (82%), H-3→L+3 (17%)
446.5	0.0049	H-6→L+1 (14%), H-5→LUMO (35%), H-5→L+2 (29%)
443.3	0.0381	H-7→L+1 (12%), H-6→LUMO (27%), H-5→L+1 (38%)
436.4	0.015	H-7→LUMO (15%), H-6→L+1 (16%), H-5→L+2 (36%)
427.5	0.4206	H-7→L+1 (11%), H-6→L+2 (23%), H-5→L+3 (31%)
421.1	0.0004	H-7→LUMO (10%), H-5→LUMO (42%), HOMO→L+5 (14%)
420.7	0.0727	H-7→L+1 (12%), H-5→L+1 (54%)

418.9	0.0067	H-6→L+3 (12%), H-5→L+4 (35%)
414 F	0.0014	$H-5 \rightarrow LOIMO (10\%), H-5 \rightarrow L+2 (16\%), HOIMO \rightarrow L+5 (34\%), HOIMO \rightarrow L+7 $ (12%)
414.5	0.0014	(13%) (10%) $(10%)$ $(10$
/12 1	0 1697	1 -0 -7 L+2 (14%), H-0 -7 L0100 (10%), H-0 -7 L+2 (13%), H-0 -7 L+4 (11%), H-
413.1	0.1087	
403.2	0.0492	H = 2 + 1 (10%) + 7 - 111MO (12%) + 7 - 1 + 2 (10%) + 6 - 1 + 1 (12%)
404.0	0.0019	$H = \frac{1}{2} + $
402.9	0.2002	$H = 7 \rightarrow 1 \pm 2$ (13%), $H = 0 \rightarrow 100000$ (22%), $H = 0 \rightarrow 1 \pm 2$ (14%) $H = 7 \rightarrow 1 \pm 2$ (11%) $H = 2 \rightarrow 1 \pm 6$ (12%) $H = 2 \rightarrow 1 \pm 5$ (10%)
200.4	0.009	$H_{2} \rightarrow H_{2} \rightarrow H_{2$
301 6	0.2201	$H_{2} \rightarrow H_{2} \rightarrow H_{2$
287.2	0.0054	$H_{-7} \rightarrow 1 + 1 (23\%), H_{-1} \rightarrow 1 + 7 (11\%)$
386.4	0.0433	$H_{-1} \rightarrow I_{+5} (12\%) + H_{0} M_{0} \rightarrow I_{+6} (56\%)$
386.0	0.0001	$H_2 \rightarrow 1+3$ (10%) $H_2 \rightarrow 1+3$ (36%) $H_2 \rightarrow 1+2$ (10%) $H_2 \rightarrow 1+4$ (12%)
285 1	0 0006	$H_2 \rightarrow H_1 MO(10\%)$
387.1	0.0000	H-16-2111MO (10%) H-15-21+1 (10%)
282.7	0.0178	$H_{-}8 \rightarrow 1 \pm 1$ (20%) $H_{-}7 \rightarrow 111MO$ (20%)
383.0	0 031	$H_8 \rightarrow H_1 MO (56\%) H_7 \rightarrow L+1 (10\%)$
381.8	0.051	$H_{-8} \rightarrow I_{+1} (21\%) H_{-1} \rightarrow I_{+5} (12\%) H_{-3} \rightarrow I_{+6} (13\%)$
381.0	0	$HOMO \rightarrow 1+5$ (32%) $HOMO \rightarrow 1+7$ (37%)
379.8	0,0006	$H-8 \rightarrow I+4 (12\%) H-6 \rightarrow I+4 (42\%)$
378.0	0.0000	$H_{-13} \rightarrow I_{+3} (12\%) H_{-12} \rightarrow I_{+2} (20\%) H_{-11} \rightarrow I_{+2} (35\%)$
376.6	0.0002	$H_{14} \rightarrow 1+2$ (11%) $H_{13} \rightarrow 1+2$ (41%) $H_{11} \rightarrow 1+3$ (13%)
370.0	0.0001	$H_{-7} \rightarrow I_{+2} (15\%) H_{-2} \rightarrow I_{+7} (10\%) H_{-1} \rightarrow I_{+6} (33\%)$
373.7	0.0005	$H_{-1} \rightarrow 1+6 (10\%) H_{-1} \rightarrow 1+7 (26\%) HOMO \rightarrow 1+8 (24\%)$
574.1	0.1357	$H_{-8} \rightarrow 1+2$ (36%) $H_{-8} \rightarrow 1+4$ (11%) $H_{-7} \rightarrow 1+3$ (20%) $H_{-6} \rightarrow 1+2$ (10%) H_{-7}
373 5	0.0018	$6 \rightarrow 1 + 4 (12\%)$
575.5	0.0010	$H-8 \rightarrow I+3$ (19%) $H-7 \rightarrow I+2$ (21%) $H-7 \rightarrow I+4$ (16%) $H-2 \rightarrow I+5$ (18%) $H-2 \rightarrow I+5$
372 0	0 0001	$1 \rightarrow 1 + 6 (14\%)$
368.3	0.0639	$H-2 \rightarrow I+6$ (48%), $H-1 \rightarrow I+5$ (22%)
366.3	0.0002	$H_{-2} \rightarrow I_{+5} (17\%)$
365.7	0	$H-19 \rightarrow I+2$ (10%), $H-11 \rightarrow I+4$ (13%)
00017	Ū	$H-29 \rightarrow LUMO (16\%), H-29 \rightarrow L+1 (12\%), H-28 \rightarrow LUMO (11\%), H-28 \rightarrow L+1$
365.5	0.0008	(16%)
365.1	0.0004	H-1→L+7 (35%), HOMO→L+8 (31%)
		$H-29 \rightarrow LUMO (13\%), H-29 \rightarrow L+1 (10\%), H-28 \rightarrow LUMO (10\%), H-28 \rightarrow L+1$
364.6	0.0001	(14%)
364.2	0.0003	
363.1	0.0002	H-21→L+2 (28%), H-21→L+4 (22%)
362.3	0.0004	H-23→L+2 (14%), H-23→L+4 (11%), H-22→L+3 (26%)
362.0	0.0001	H-23→L+3 (22%), H-22→L+2 (13%)
360.7	0	H-21→L+2 (13%), H-12→L+4 (11%)
359.9	0.0223	H-8→L+4 (36%), H-7→L+3 (26%)
359.7	0.0001	H-8→L+3 (28%), H-7→L+4 (55%)
358.9	0.015	H-20→L+2 (10%), H-14→L+4 (12%), H-13→L+4 (23%), H-12→L+3 (10%)
358.5	0.0038	H-2→L+7 (25%)
357.8	0.2606	H-10→LUMO (14%), H-9→L+1 (11%)
	÷	

	ı	
355.9	0	H-2→L+7 (22%), H-1→L+8 (11%)
353.0	0.001	H-9→L+2 (20%), H-1→L+8 (23%), HOMO→L+9 (12%)
352.9	0.0536	H-8→L+4 (10%), H-2→L+8 (23%), H-1→L+9 (14%)
350.7	0.0038	H-9→LUMO (10%), HOMO→L+9 (33%)
350.5	0.0219	
349.4	0.0003	H-40→LUMO (12%), H-39→LUMO (10%), H-39→L+1 (14%)
		H-40→LUMO (16%), H-40→L+1 (12%), H-39→LUMO (10%), H-39→L+1
348.9	0.0177	(14%)
347.4	0.0031	H-4→L+5 (20%), H-4→L+7 (16%), H-3→L+8 (11%)
346.5	0.0049	H-4→L+8 (10%), H-3→L+5 (17%), H-3→L+7 (15%)
343.9	0.1092	H-10→L+2 (23%), H-9→L+1 (32%)
342.6	0	H-32→L+2 (16%), H-9→LUMO (13%)
342.3	0.0012	H-4→L+5 (14%), H-3→L+6 (16%)
341.7	0.0123	H-4→L+6 (39%), H-3→L+5 (23%)
341.5	0.0028	H-34→L+3 (18%), H-33→L+2 (12%)
341.5	0.0007	H-9→L+2 (13%), H-4→L+5 (13%), H-3→L+6 (27%)
340.6	0.0246	H-2→L+8 (33%), H-1→L+9 (33%)
340.3	0	H-34→L+2 (11%), H-32→L+2 (11%), H-32→L+4 (18%)
		H-10→L+1 (17%), H-10→L+3 (12%), H-9→LUMO (20%), H-9→L+4 (13%),
338.2	0.0001	H-2→L+9 (13%)
337.1	0.2396	H-9→L+1 (24%), H-9→L+3 (18%)
337.1	0.0047	H-10→L+1 (15%), H-2→L+9 (10%)
335.6	0.0656	H-10→LUMO (12%), H-9→L+3 (20%)
334.9	0.1692	H-10→LUMO (42%)
334.4	0.0005	H-10→L+1 (27%), H-2→L+9 (11%)
334.2	0.0008	H-4→L+7 (43%)
334.1	0.0631	H-11→L+1 (10%), H-3→L+7 (33%)
		H-14→LUMO (10%), H-13→LUMO (12%), H-12→L+1 (21%), H-11→L+1
333.7	0.0079	(18%)
333.7	0.0009	H-13→L+1 (14%), H-12→LUMO (17%), H-11→LUMO (26%)
333.3	0.3551	H-1→L+9 (11%), HOMO→L+10 (55%)

Figure S26: Representations of the frontier MOs for model P4 (energy in eV).

Fragments	H-4	H-3	H-2	H-1	НОМО	LUMO	L+1	L+2	L+3	L+4
Thiophène	36.3	35.3	36.5	37.1	37.5	41.1	47.2	47.0	47.3	47.6
DPP	58.7	54.8	52.0	49.6	48.3	55.4	49.3	48.9	48.7	48.5
platine	1.0	3.2	4.0	4.8	5.3	0.6	0.6	1.3	1.3	1.3
Ethynyl	4.1	6.7	7.5	8.5	8.9	2.9	2.9	2.8	2.7	2.6

Table S7: Relative atomic contributions (%) of the various fragments to the frontier MOs of model **P4**.

Table S8: Calculated positions (λ), oscillator strengths (f) and major contributions of the first 30 singlet-singlet electronic transitions for model **P4**.

λ(nm)	f	Major contributions
779.1	11.1885	H-2→L+4 (10%), H-1→L+3 (18%), HOMO→L+2 (44%)
757.2	0.0998	H-1→LUMO (10%), H-1→L+2 (14%), HOMO→L+3 (15%)
731.6	0.3912	H-3→L+1 (11%), HOMO→L+2 (17%)
707.1	0.002	H-1→L+2 (22%), HOMO→L+3 (23%)
690.6	0.0175	H-2→L+2 (21%), H-1→L+3 (28%), HOMO→L+4 (30%)
687.5	0.2072	H-3→L+1 (20%), HOMO→L+1 (62%)
686.6	0.3747	H-4→LUMO (17%), HOMO→LUMO (64%)
670.7	0.0774	H-4→LUMO (14%), H-1→LUMO (57%), HOMO→LUMO (17%)
670.1	0.1007	H-3→L+1 (12%), H-1→L+1 (61%), HOMO→L+1 (16%)
656.0	0.0005	H-1→L+2 (35%), H-1→L+4 (10%), HOMO→L+3 (33%)
652.0	0.0211	H-2→LUMO (53%), HOMO→L+4 (10%)
650.5	0.0018	H-2→L+1 (61%)
646.4	0.0231	H-2→LUMO (11%), H-2→L+2 (30%), HOMO→L+4 (34%)
641.1	0.0034	H-2→L+3 (33%), H-1→L+4 (35%), HOMO→L+3 (11%)
		H-2→L+2 (20%), H-2→L+4 (23%), H-1→L+3 (20%), HOMO→L+2
638.6	0.1924	(32%)
		H-3→L+2 (13%), H-2→L+3 (14%), H-1→L+4 (24%), HOMO→L+3
621.9	0.0021	(13%)
618.8	0.0007	H-4→L+2 (15%), H-3→L+3 (27%), H-2→L+4 (20%)
615.5	0.0061	H-4→L+3 (14%), H-3→L+2 (16%), H-2→L+3 (23%), H-1→L+2 (14%)
611.9	0.0018	H-4→LUMO (25%), H-3→LUMO (64%)
611.1	0.1022	H-3→L+3 (10%), H-2→L+4 (31%), H-1→L+3 (18%)
609.9	0.0167	H-4→L+1 (62%), H-3→L+1 (28%)
602.6	0.0002	H-5→L+2 (27%), H-4→L+3 (15%), H-3→L+4 (10%)
599.6	0.0934	H-5→L+1 (15%)
598.0	0.0053	H-5→LUMO (12%), H-5→L+4 (10%)
589.3	0.1495	H-8→L+1 (15%), H-5→L+3 (10%), H-4→L+2 (27%)
587.9	0.0235	H-9→LUMO (20%), H-6→L+3 (12%), H-3→L+2 (13%)
584.4	0.0327	H-8→L+1 (20%), H-5→L+1 (44%)
583.7	0.0422	H-9→LUMO (18%), H-5→LUMO (45%)
583.5	0.0732	H-6→L+2 (10%), H-4→L+2 (11%), H-3→L+3 (24%)
581.6	0.0147	H-4→L+3 (34%), H-3→L+2 (20%)

572.0	0.0032	H-4→L+4 (10%), H-3→L+3 (14%), H-3→L+4 (53%)
569.5	0.005	H-4→L+3 (10%), H-4→L+4 (57%), H-3→L+3 (11%), H-3→L+4 (10%)
566.3	0.0023	H-7→LUMO (10%), H-6→LUMO (48%), H-5→LUMO (22%)
566.1	0.0019	H-6→L+1 (49%), H-5→L+1 (21%)
563.9	0.0001	H-5→L+2 (18%), HOMO→L+5 (15%), HOMO→L+7 (22%)
558.4	0.0052	H-5→L+3 (26%), H-1→L+5 (18%), HOMO→L+6 (20%)
551.8	0.0027	H-7→L+3 (11%), H-6→L+2 (27%), H-5→L+3 (27%)
549.9	0.0031	H-7→LUMO (17%), H-1→L+6 (10%)
548.1	0.0021	H-7→LUMO (36%), H-5→L+4 (12%), HOMO→L+7 (11%)
547.5	0.0011	H-7→L+1 (53%), H-5→L+4 (10%)
545.6	0.0004	H-7→LUMO (15%), H-7→L+1 (17%), H-7→L+2 (12%), H-5→L+4 (30%)
		H-6→L+2 (17%), H-6→L+4 (18%), H-1→L+7 (16%), HOMO→L+6
542.1	0.0089	(18%)
		H-7→L+2 (19%), H-7→L+4 (12%), H-2→L+5 (10%), HOMO→L+5
539.5	0.0034	(19%)
538.3	0.0202	HOMO→L+6 (27%)
537.4	0.0014	HOMO→L+5 (26%), HOMO→L+7 (14%)
		H-7→L+3 (10%), H-6→L+4 (19%), H-1→L+7 (27%), HOMO→L+8
532.8	0.0107	(22%)
529.0	0.0065	H-4→L+5 (11%), H-2→L+7 (11%), H-1→L+5 (10%), H-1→L+6 (28%)
527.9	0.0909	H-4→L+6 (12%), H-3→L+5 (16%), H-3→L+6 (11%), H-1→L+5 (16%)
523.5	0.0001	H-7→L+3 (35%), H-6→L+2 (10%), H-6→L+4 (26%)
		H-3→L+6 (11%), H-2→L+7 (15%), H-1→L+8 (20%), HOMO→L+9
523.0	0.0005	(20%)
		H-4→L+5 (11%), H-2→L+5 (22%), H-1→L+7 (10%), HOMO→L+8
521.6	0.0019	(13%)
521.2	0.0003	H-2→L+5 (13%), H-1→L+7 (11%), HOMO→L+8 (16%)
520.2	0.0004	H-7→L+4 (44%), H-6→L+3 (18%)
519.1	0.0045	H-4→L+6 (11%), H-2→L+6 (43%)
513.8	0.0004	H-2→L+5 (14%), H-2→L+7 (43%), HOMO→L+9 (25%)
		H-2→L+9 (20%), H-1→L+8 (25%), HOMO→L+7 (15%), HOMO→L+9
510.1	0.0142	(15%)
509.8	0.0777	H-2→L+8 (32%), H-1→L+9 (26%)
508.8	0	H-8→LUMO (98%)
508.3	0	H-9→L+1 (98%)
502.4	0.0012	H-9→L+2 (50%), H-9→L+3 (35%)
502.0	0.0019	H-8→L+2 (45%), H-8→L+3 (39%)
499.4	0.1585	H-4→L+8 (13%), H-3→L+7 (30%), H-1→L+9 (17%)
497.6	0.0007	H-4→L+7 (31%), H-3→L+8 (26%), H-2→L+9 (11%)
495.7	0.0211	H-2→L+8 (38%), H-1→L+7 (10%), H-1→L+9 (25%)
494.6	0.0027	H-4→L+5 (27%), H-3→L+5 (38%), H-3→L+6 (18%)
492.8	0.0009	H-4→L+6 (52%), H-3→L+5 (14%), H-3→L+6 (10%)
491.3	0.0003	H-2→L+9 (45%), H-1→L+8 (17%)
488.6	0.0316	H-8→L+2 (46%), H-8→L+3 (24%), H-8→L+4 (11%)
488.2	0.0888	H-9→L+2 (28%), H-9→L+3 (16%), H-5→L+5 (11%)
487.8	0.1416	H-9→L+2 (18%), H-9→L+3 (22%), H-5→L+5 (13%)
486.0	0.003	H-6→L+5 (20%), H-5→L+6 (30%)

483.1	0.0025	H-6→L+6 (11%), H-5→L+7 (18%), H-3→L+9 (10%)
479.4	0.0009	H-8→L+3 (24%), H-8→L+4 (71%)
478.5	0.0012	H-9→L+3 (18%), H-9→L+4 (66%)
478.2	0.0003	H-9→L+4 (10%), H-4→L+7 (29%), H-3→L+8 (28%)
475.2	0.0176	H-5→L+7 (16%), H-4→L+8 (23%), H-3→L+7 (26%)
472.4	0.0005	H-6→L+7 (27%), H-5→L+6 (17%), H-5→L+8 (16%)
		H-7→L+7 (15%), H-6→L+8 (20%), H-5→L+5 (14%), H-5→L+9 (13%),
471.8	0.0189	H-4→L+8 (13%)
469.5	0.0276	H-9→L+5 (29%), H-5→L+6 (14%)
468.9	0.1912	H-8→L+6 (34%), H-5→L+5 (14%)
465.8	0.0165	H-4→L+8 (10%), H-3→L+9 (49%)
464.3	0.0041	H-4→L+9 (48%)
463.1	0.0093	H-6→L+5 (27%), H-5→L+8 (12%), H-4→L+9 (14%)
462.0	0.0134	H-7→L+7 (10%), H-6→L+6 (34%), H-3→L+9 (11%)
		H-13→L+1 (11%), H-12→L+1 (30%), H-11→L+1 (22%), H-10→L+1
457.8	0.0934	(11%)
		H-13→LUMO (21%), H-12→LUMO (23%), H-11→LUMO (20%), H-
457.5	0.0959	10→LUMO (11%)
454.6	0.0007	H-6→L+5 (10%), H-6→L+7 (31%), H-5→L+8 (31%)
453.8	0.0035	H-7→L+5 (48%), H-5→L+9 (16%)
452.9	0.086	H-10→L+2 (57%)
452.7	0.0006	H-7→L+6 (61%)
449.2	0.0021	H-13→L+2 (12%), H-11→L+2 (32%), H-10→L+3 (25%)
		H-7→L+5 (10%), H-7→L+9 (14%), H-6→L+8 (23%), H-5→L+7 (14%),
448.2	0.0366	H-5→L+9 (27%)
447.3	0.0195	H-7→L+7 (38%), H-7→L+9 (12%), H-6→L+8 (10%)
444.2	0.0008	H-7→L+8 (28%), H-6→L+9 (38%)
439.4	0.0021	H-12→L+2 (10%), H-11→L+3 (22%), H-10→L+4 (36%)
437.9	0.0014	H-13→L+2 (23%), H-12→L+3 (21%), H-11→L+4 (22%)
		H-13→L+3 (19%), H-12→L+2 (10%), H-12→L+4 (10%), H-10→LUMO
436.5	0.0029	(22%)
		H-13→L+4 (12%), H-11→L+2 (13%), H-10→LUMO (12%), H-10→L+1
435.8	0.0025	(26%)
433.0	0.0012	H-7→L+8 (37%), H-6→L+9 (31%)
431.9	0.0045	H-13→L+3 (13%), H-10→LUMO (31%), H-10→L+1 (20%)

TD-DFT simulated absorption spectra of the models P1-P4

Figure S27: Bar graph reporting the calculated oscillator strength and calculated position of the electronic transitions calculated by TDDFT for model **P1** (bar graph; f = computed oscillator strength). The simulated absorptions are generated using a Full width at half maximum (FWHM) of 1000 cm⁻¹.

Figure S28: Bar graph reporting the calculated oscillator strength and calculated position of the electronic transitions calculated by TDDFT for model **P4** (bar graph; f = computed oscillator strength). The simulated absorptions are generated using a Full width at half maximum (FWHM) of 3000 cm⁻¹.

10. Emission spectroscopy

Figure S29: Emission spectrum of **P1** in 2MeTHF at 77 K. The signal labelled with a star (*) is an artifact associated with the Dewar+solvent assembly. The signals at 537 and 560 nm are an emission arising from the triplet state of the **[Pt]**-moiety.

Figure S30: Emission decay (black) of the signal at λ_{em} = 537 nm for **P1** in 2MeTHF at 77K, residuals (green), IRF (blue) and best fit (red). Multi-exponential analysis yields τ_P = 13.2 µs (11.4), 150 µs (88.6 %), χ^2 = 1.096. λ_{exc} = 350 nm.

Figure S31: Emission spectrum of **P4** in 2MeTHF at 77 K. The signal labelled with a star (*) is an artifact associated with the Dewar+solvent assembly. The signals at 537 and 560 nm are an emission arising from the triplet state of the **[Pt]**-moiety.

Figure S32: Emission decay (black) of the signal at λ_{em} = 537 nm for **P4** in 2MeTHF at 77K, residuals (green), IRF (blue) and best fit (red). Multi-exponential analysis yields τ_P = 11.1 µs (18.9), 130 µs (81.1%), χ^2 = 1.000. λ_{exc} = 350 nm.