Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Molecular Origin of Efficient Hole Transfer from Non-Fullerene Acceptors: Insights from First-Principles Calculations

Leandro Benatto ^a , Cleber F. N. Marchiori ^{b,c}, C. Moyses Araujo ^c and Marlus Koehler ^a

^a Departamento de Física, Universidade Federal do Paraná, C.P 19044, 81531-980, Curitiba-PR, Brazil

^bDepartment of Chemistry – Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, Box 538, 751 21 Uppsala, Sweden

^c Department of Physics and Astronomy, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, Box 516, 751 20 Uppsala, Sweden

Figure S1 - Optical gap for non-fullerene molecules. Theoretical results of TD-DFT calculation with PCM and experimental results determined from the first maximum absorption wavelength (λ_{max}) in thin film (extracted in accordance with references of Table 2).

Figure S2 - Correlation between theoretical and experimental results of *IP* and *EA*. The linear equation and the the squared correlation coefficient (Rsq) are displayed in detail. Results for solid-like state (with PCM parameters of Table 1) and for molecules in dichloromethane solvent ($\epsilon = 8.93$)¹. We use the M06/6-311G(d,p) theory level for all these procedure.

	Rsq							
	Solid-like state			Dichloromethane				
	Electronic energy	Internal energy	Enthalpy	Gibbs free energy	Electronic energy	Internal energy	Enthalpy	Gibbs free energy
IP	0.82646	0.81989	0.8199	0.7912	0.81805	0.84632	0.84633	0.81805
EA	0.44491	0.44029	0.44029	0.46347	0.41557	0.39644	0.39644	0.39605

 Table S1 - Squared correlation coefficient (Rsq) of Figure S2.

Molecules	IP	EA	E_{opt}	E_b
NFAs				
IDIC	6.82	2.55	2.22	2.05
IT-M	6.35	2.44	2.10	1.81
IT-DM	6.31	2.39	2.11	1.81
ITIC	6.41	2.49	2.10	1.82
ITIC-4f	6.54	2.66	2.07	1.81
IDTBR	6.26	2.40	1.93	1.93
SF-PDI2	6.75	2.50	2.27	1.98
hPDI3	6.96	2.82	2.31	1.84
SubPc	6.54	1.38	2.49	2.67
SubNc	5.90	1.49	2.13	2.28
FAs				
PC ₇₁ BM	6.79	1.96	2.14	2.69
PC ₆₁ BM	6.94	1.94	2.06	2.94

Table S2 - Theoretical results - in gas phase - of *IP*, *EA*, E_{opt} and E_b energies. Molecules in GS geometry. Results in eV.

Figure S3 - Binding energy of Frenkel exciton for FAs and NFAs in ground state (GS) geometry calculated in gas phase and with PCM method. We also present the result in the gas phase divided by the dielectric constant.

Molecules	IP	EA	E_{opt}	E_b
NFAs				
IDIC	5.73	3.47	1.77	0.49
IT-M	5.48	3.32	1.70	0.46
IT-DM	5.43	3.31	1.70	0.42
ITIC	5.50	3.35	1.69	0.46
ITIC-4f	5.55	3.45	1.67	0.43
IDTBR	5.21	3.25	1.53	0.43
SF-PDI2	5.67	3.45	1.68	0.54
hPDI3	6.07	3.59	2.04	0.44
SubPc	5.51	2.74	2.15	0.62
SubNc	4.96	2.83	1.77	0.36
FAs				
PC ₇₁ BM	5.71	3.09	1.64	0.96
PC ₆₁ BM	5.76	3.10	1.55	1.11

Table S3 - Theoretical results - in solid with PCM - of *IP*, *EA* and E_{opt} energies. Molecules in ES geometry. Results in eV.

Figure S4 - Molecular energies for molecules in ground state (GS) geometry and excited state (ES) geometry calculated with PCM method (a) Fundamental gap ($E_{fund} = IP - EA$). (b) Optical gap (E_{opt}). (c) Energy difference between E_{fund} (GS) and E_{fund} (ES) and between E_{opt} (GS) and E_{opt} (ES).

Figure S5 - Theoretical simulation of the intramolecular electronic dipole moments of half molecule models (dipole in Debyes).

Figure S6 - Electronic dipole moment of subphitalocianines (dipole in Debyes).

Figure S7 - (a) Exciton binding energy increasing the distance from r_i . (b) Zoom-in the region of the exciton binding energy equals $k_b T$ (dotted black line).

Table S4 - Theoretical results of initial electron-hole par distance r_i , Onsager radius r_c and the difference between $r_c - r_i$. All results in nm obtained from $E_b(r) = e^2/4\pi\varepsilon\varepsilon_0 r$. r_i is the initial electron-hole distance (of the Frenkel exciton) and r_c is the Coulomb capture radius (or Onsager radius), defined as the distance at which the Coulomb attraction energy equals the thermal energy $k_B T$.² When $E_b(r) = k_B T$ it is considered that the electron-hole pair is dissociated.

Molecules	r _i	r _c	<i>r</i> _c - <i>r</i> _i
NFAs			
IDIC	0.56	12.18	11.62
IT-M	0.64	12.64	12.00
IT-DM	0.61	11.16	10.55
ITIC	0.63	12.45	11.82
ITIC-4	F 0.64	11.79	11.15
IDTBR	0.58	11.25	10.67
SF-PDI	2 0.53	11.87	11.34
hPDI3	0.64	11.50	10.86
SubPc	0.51	13.03	11.48
SubNc	0.62	9.66	8.96
FAs			
PC ₇₁ BM	I 0.41	14.36	13.95
PC ₆₁ BM	I 0.34	14.36	14.02

Figure S8 - Diagram representing the energy band formation and band gap decrease due to the intermolecular electronic coupling as a function of the number molecules.

Figure S9 - (a) δ_h and (b) δ_e variation as a function of the number of molecules considering $S_{h/e}$ = ± 10 meV and $\beta_{h/e}$ = ± 50 meV.

Figure S10 - (a) δ_h and (b) δ_e change as a function of the number of coupled molecules considering the results of $S_{h/e}$ and $\beta_{h/e}$ of three **PC**₆₁**BM** dimers.

Figure S11 - Exciton binding energy as a function of the number of coupled molecules for $PC_{61}BM$ - 1, $PC_{61}BM$ - 2 and $PC_{61}BM$ - 3.

Figure S12 - Exciton binding energy as a function of the number of molecules. The results of **PC**₆₁**BM** are the average between the simulated dimers. $E_b(1)$ is the binding energy of Frenkel exciton calculated with E_b^{vac}/ε method for molecules in GS geometry.

References

- 1 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, X. Li and M. Caricato, *Gaussian, Inc., Wallingford CT*.
- 2 T. M. Clarke and J. R. Durrant, *Chem. Rev.*, 2010, **110**, 6736–6767.