Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Improving the Photovoltaic Performance

of Fluorinated 2,2'-Bithiophene Core-based D(A-Ar)₂ Type Small Molecules via

Strategically End-capped Heteroaromatic Substitution

Min Li,^b Shichao Wang,^c Chengjia Bao,^a Zuoji Liu,^b Dan Bai,^{d*} Zhen Yang,^b

Weiguo Zhu,^{a*} Qiang Peng,^{c*} Yu Liu,^{a,b*}

^aSchool of Materials Science and Engineering, Jiangsu Collaboration Innovation

Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of

Light-Electricity-Heat Energy-Converting Materials and Applications, National

Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China.

 ^bCollege of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in the Ministry of Education, Xiangtan University, Xiangtan 411105, China.
^cKey Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering,

Sichuan University, Chengdu 610065, China

^dDepartment of Biochemistry and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China

> Email addresses: (Y. L) liuyu03b@126.com (Q. P) qiangpeng@scu.edu.cn (D.B) iamdbai@nwpu.edu.cn (W. Z) zhuwg18@126.com

Contents

- 1. Characterization and measurement.
- 2. ¹H NMR, ¹³C NMR and MS Spectra.
- 3. The absorption molar coefficient in solution.
- 4. Fabrication and characterization of organic solar cells.
- 5. Photovoltaic properties of the FBT(TDPP-TS)₂/PC₇₁BM-based OPV cells.
- 6. Photovoltaic properties of the FBT(TDPP-TZ)₂/PC₇₁BM-based OPV cells.
- 7. Photovoltaic properties of the FBT(TDPP-TZS)₂/PC₇₁BM-based OPV cells.

1. Characterization and measurement

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AV-400 spectrometer using tetramethyl silane (TMS) as a reference in deuterated chloroform solution at 298 K. Mass spectrometric measurements were performed on Bruker Bifiex III MALDI-TOF. Thermogravimetric analyses (TGA) were conducted under a dry nitrogen gas flow at a heating rate of 20 °C min⁻¹ on a Perkin-Elmer TGA 7. Differential scan calorimetry (DSC) measurements were carried out with a Netzsch DSC-204 under N₂ flow at heating and cooling rates of 10 °C min⁻¹. UV-Vis absorption spectra were recorded on a HP-8453 UV visible system. Cyclic voltammograms (CV) were carried out on a CHI660A electrochemical work station with three electrode electrochemical cell in a 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) acetonitrile solution with a scan 100 mV s⁻¹ at room temperature (RT) under argon atmosphere. In this three-electrode cell, a platinum rod, platinum wire and Ag/AgCl electrode were used as a working electrode, counter electrode and reference electrode, respectively. The surface morphology of the SMs:PC₇₁BM blend film was investigated by an atomic force microscopy (AFM) on a Veeco, DI multimode NS-3D apparatus in a tapping mode under normal air condition at RT with a 5 µm scanner. The HOMO and LUMO distributions of SMs were calculated by the density functional theory (DFT) (B3LYP; 6-31G*) method.

2. ¹ H NMR and ¹³ C NMR Spectra

Fig.S8. ¹H NMR spectrum of DPP-TZ.

Fig.S10. ¹H NMR spectrum of DFT(TDPP-TS)₂.

Fig. S12. ¹H-NMR spectrum of DFT(TDPP-TZS)₂

Fig. S14. ¹³C-NMR spectrum of TS-Sn-R1.

Fig. S16. ¹³C-NMR spectrum of TZS-R1.

Fig.S18. ¹³C-NMR spectrum of DPP-TS.

Fig. S22. ¹³C-NMR spectrum of DFT(TDPP-TZ)₂

Fig. S23. ¹³C-NMR spectrum of DFT(TDPP-TZS)₂

Fig. S24. MALDI-TOF MS Spectrum of DFT(TDPP-TS)₂

Fig. S25. MALDI-TOF MS Spectrum of DFT(TDPP-TZ)₂

Fig. S26. MALDI-TOF MS Spectrum of DFT(TDPP-TZS)₂

3. The absorption molar coefficient in solution.

Fig.S27. Absorption spectra of SMs in dilute CHCl₃, respectively.

4. The Simulated absorption spectrum

Fig.S28. Simulated absorption spectrum of a) FBT(TDPP-TS)₂, b) FBT(TDPP-TZ)₂, c) FBT(TDPP-TZS)₂, respectively.

5. Fabrication and characterization of organic solar cells

А sandwich of: ITO/PEDOT:PSS(5000 140 °С structure rpm, 30min)/SMs:PC71BM) (2000 rpm)/Ca (10 nm)/Al (100 nm), was used in the solar cells. The photosensitive layer was subsequently prepared by spin-coating rate of 2000 rpm with a solution of the SM/PC₇₁BM (1:1, w/w) at room temperature in chloroform (CF) with 0.4% CN (CN/CF, v/v) on the PEDOT:PSS layer with a typical concentration of 12 mg mL⁻¹, followed by CS₂-SVA treatment for 30 s. Ca (10 nm) and Al (100 nm) were successively deposited on the photosensitive layer in vacuum and used as top electrodes. The current-voltage (I-V) characterization of the devices was carried out on a computer-controlled Keithley source measurement system. A solar simulator was used as the light source and the light intensity was monitored by a standard Si solar cell. The active area was 0.1 cm^2 for each cell. The thicknesses of the spun-cast films were recorded by a profilometer (Alpha-Step 200, Tencor Instruments). The external quantum efficiency (EQE) was measured with a Stanford Research Systems model SR830 DSP lock-in amplifier coupled with WDG3 monochromator and a 150 W xenon lamp.

6. Photovoltaic properties of the FBT(TDPP-TS)₂/PC₇₁BM-based OPV cells.

Fig. S29. *J-V* curve of the FBT(TDPP-TS)₂/PC₇₁BM-based OSCs under AM.1.5G illumination (100 mW/cm²) with SM/PC₇₁BM D:A ratios optimization.

D:A	V _{oc} (V)	J _{sc} (mA/cm ²)	FF(%)	PCE(%)
1:0.8	0.76	6.39	34.18	1.66
1:1	0.76	8.51	34.63	2.24
1:1.2	0.76	5.47	43.29	1.80

Table S1. Photovoltaic parameters of the $FBT(TDPP-TS)_2/PC_{71}BM$ -based PSCs under AM.1.5G illumination (100 mW/cm²) with SM/PC₇₁BM D:A ratios optimization.

Device condition: (1) chloroform(CF); (2) concentration: 12 mg/mL of FBT(TDPP-TS)₂ in CF; (3) Structure: ITO/PEDOT:PSS(5000 rpm, 140 °C 30min)/SMs:PC₇₁BM) (2000 rpm)/Ca (10 nm)/Al (100 nm); (4) Spin-coating temperature: at room temperature.

Fig. S30. *J-V* curve of the FBT(TDPP-TS)₂/PC₇₁BM-based OSCs under AM.1.5G illumination (100 mW/cm²) with SM/PC₇₁BM CN ratios optimization.

CN	V _{oc} (V)	J _{sc} (mA/cm ²)	FF(%)	PCE(%)
0.2%	0.765	10.63	46.13	3.75
0.4%	0.77	12.9	46.06	4.58
0.6%	0.75	10.6	47.06	3.73

Table S2. Photovoltaic parameters of the $FBT(TDPP-TS)_2/PC_{71}BM$ -based PSCs under AM.1.5G illumination (100 mW/cm²) with SM/PC₇₁BM CN ratios optimization.

Device condition: (1) chloroform(CF); (2) concentration: 12 mg/mL of FBT(TDPP-TS)₂ in CF; (3) Structure:ITO/PEDOT:PSS(5000 rpm, 140 °C 30min)/SMs:PC₇₁BM) (2000 rpm)/Ca (10 nm)/Al (100 nm). (4) Spin-coating temperature: at room temperature.

Fig. S31. *J-V* curve of the FBT(TDPP-TS)₂/PC₇₁BM-based SM-OSCs under AM.1.5G illumination (100 mW/cm²) with CS₂ solvent anealing.

Table. S3. J-V curve of the FBT(TDPP-TS)₂/PC₇₁BM-based SM-OSCs under

Solvent	V _{oc} (V)	J _{sc} (mA/cm ²)	FF(%)	PCE(%)
CS_2	0.735	15.16	62.47	6.96

AM.1.5G illumination (100 mW/cm²) with CS₂ solvent anealing.

Device condition: (1) chloroform (CF); (2) concentration: ITO/PEDOT: PSS(5000 rpm, 140 °C 30min)/SMs:PC71BM) (2000 rpm)/Ca (10 nm)/Al (100 nm); (3) Solvent vapor annealing time: 30 s

7. Photovoltaic properties of the FBT(TDPP-TZ)₂/PC₇₁BM-based OPV cells.

Fig. S32. J-V curve of the FBT(TDPP-TZ)₂/PC₇₁BM-based SM-OSCs under

AM.1.5G illumination (100 mW/cm²) with D:A ratios optimization.

Table. S4. J-V curve of the FBT(TDPP-TZ)₂/PC₇₁BM-based SM-OSCs under 21

D:A	V _{oc} (V)	J _{sc} (mA/cm ²)	FF(%)	PCE(%)
1:0.8	0.77	7.12	41.77	2.29
1:1	0.77	8.99	42.47	2.94
1:1.2	0.77	9.04	36.06	2.51

AM.1.5G illumination (100 mW/cm²) with D:A ratios optimization.

Device condition: (1) chloroform(CF); (2) concentration: 12 mg/mL of FBT(TDPP-TZ)₂ in CF; (3) Structure: ITO/PEDOT:PSS(5000 rpm, 140 °C 30min)/ SMs: PC₇₁BM) (2000 rpm)/Ca (10 nm)/Al (100 nm); (4) Spin-coating temperature: at room temperature.

Fig. S33. *J-V* curve of the FBT(TDPP-TZ)₂/PC₇₁BM-based SM-OSCs under AM.1.5G illumination (100 mW/cm²) with CN ratios optimization.

Table. S5. J-V curve of the FBT(TDPP-TZ)₂/PC₇₁BM-based SM-OSCs under

CN	V _{oc} (V)	J _{sc} (mA/cm ²)	FF(%)	PCE(%)
0.2%	0.78	11.20	56.15	4.90
0.4%	0.78	11.24	60.58	5.31
0.6%	0.77	11.67	57.95	5.17

AM.1.5G illumination (100 mW/cm²) with CN ratios optimization.

Device condition: (1) chloroform(CF); (2) concentration: 12 mg/mL of FBT(TDPP-TZ)₂ in CF; (3) Structure: ITO/PEDOT:PSS(5000 rpm, 140 °C 30min)/ SMs: PC₇₁BM) (2000 rpm)/Ca (10 nm)/Al (100 nm); (4) Spin-coating temperature: at room temperature.

Fig. S34. *J-V* curve of the FBT(TDPP-TZ)₂/PC₇₁BM-based SM-OSCs under AM.1.5G illumination (100 mW/cm²) with CS₂ solvent annealing.

Table. S6. J-V curve of the FBT(TDPP-TZ)₂/PC₇₁BM-based SM-OSCs under

Solvent	V _{oc} (V)	$J_{sc}(mA/cm^2)$	FF(%)	PCE(%)
THF	0.75	16.12	63.09	7.63

AM.1.5G illumination (100 mW/cm²) with CS₂ solvent annealing.

Device condition: (1) chloroform (CF); (2) concentration: ITO/PEDOT:PSS(5000 rpm, 140 °C 30min)/ SMs: PC₇₁BM) (2000 rpm)/Ca (10 nm)/Al (100 nm); (3) Solvent vapor annealing time: 30 s

5. Photovoltaic properties of the FBT(TDPP-TZS)₂/PC₇₁BM-based OPV cells.

Fig. S35. *J-V* curve of the FBT(TDPP-TZS)₂/PC₇₁BM-based OSCs under AM.1.5G illumination (100 mW/cm²) with SM/PC₇₁BM D:A ratios optimization.

Table. S7. J-V curve of the FBT(TDPP-TZS)₂/PC₇₁BM-based SM-OSCs under

D:A	V _{oc} (V)	J _{sc} (mA/cm ²)	FF(%)	PCE(%)
1:0.8	0.79	12.18	46.56	4.48
1:1	0.79	14.65	47.70	5.52
1:1.2	0.79	11.07	39.22	3.43

AM.1.5G illumination (100 mW/cm²) with D:A ratios optimization.

Device condition: (1) chloroform(CF); (2) concentration: 12 mg/mL of FBT(TDPP-TZS)₂ in CF; (3) Structure: ITO/PEDOT:PSS(5000 rpm, 140 °C 30min)/ SMs: PC₇₁BM) (2000 rpm)/Ca (10 nm)/Al (100 nm); (4) Spin-coating temperature: at room temperature.

Fig. S36. *J-V* curve of the FBT(TDPP-TZS)₂/PC₇₁BM-based OSCs under AM.1.5G illumination (100 mW/cm²) with SM/PC₇₁BM CN ratios optimization.

Table. S8. J-V curve of the FBT(TDPP-TZS)₂/PC₇₁BM-based SM-OSCs under

CN	V _{oc} (V)	J _{sc} (mA/cm ²)	FF(%)	PCE(%)
0.2%	0.80	16.02	52.23	6.69
0.4%	0.82	16.23	55.58	7.40
0.6%	0.81	16.06	52.47	6.82

AM.1.5G illumination (100 mW/cm²) with CN ratios optimization.

Device condition: (1) chloroform(CF); (2) concentration: 12 mg/mL of FBT(TDPP-TZS)₂ in CF; (3) Structure: ITO/PEDOT:PSS(5000 rpm, 140 °C 30min)/ SMs: PC₇₁BM) (2000 rpm)/Ca (10 nm)/Al (100 nm); (4) Spin-coating temperature: at room temperature.

Fig. S37. *J-V* curve of the FBT(TDPP-TZS)₂/PC₇₁BM-based SM-OSCs under AM.1.5G illumination (100 mW/cm²) with CS₂ solvent annealing.

Table. S9. J-V curve of the FBT(TDPP-TZS)₂/PC₇₁BM-based SM-OSCs under

Solvent	V _{oc} (V)	J _{sc} (mA/cm ²)	FF(%)	PCE(%)
CS ₂	0.80	16.75	66.93	8.91

AM.1.5G illumination (100 mW/cm²) with CS₂ solvent annealing.

Device condition: (1) chloroform (CF); (2) concentration: ITO/PEDOT:PSS(5000 rpm, 140 °C 30min)/ SMs: PC₇₁BM) (2000 rpm)/Ca (10 nm)/Al (100 nm); (3) Solvent vapor annealing time: 30 s