Iridium(III) phosphors with rigid fused-heterocyclic chelating architecture for efficient deep-red/near-infrared emission in

polymer light-emitting diodes

Caifa You,^a Denghui Liu,^b Fanyuan Meng,^c Yafei Wang,^b Junting Yu,^b Song Wang,^{*d} Shijian Su^{*c} and Weiguo Zhu^{*a,b}

^a College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in the Ministry of Education, Xiangtan University, Xiangtan 411105, China.

^b School of Materials Science and Engineering, Jiangsu Collaboration Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China.

^c State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.

^{*d*} Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices Hubei University of Arts and Science, Xiangyang, 441053, P. R. China.

*To whom correspondence should be addressed. Email:

(W. Z.) <u>zhuwg18@126.com</u>

(S. S.) <u>mssjsu@scut.edu.cn</u>

(S. W.) <u>wangsong1984@126.com</u>

Contents of Figures and Tables

Fig. S1: TGA curves of Ir(III) complexes.

Fig. S2: ORTEP plot of (DBQ)₂Ir(acac).

Fig. S3: Packing diagram of (DBQ)₂Ir(acac) in crystal.

Fig. S4: UV-Vis absorption spectra of free ligands in DCM at RT.

Fig. S5: Normalized emission spectra of Ir(III) complexes in 2-MeTHF at 77 K.

Fig. S6: Normalized absorption spectra of Ir(III) complexes in various solvents.

Fig. S7: Emission spectra of Ir(III) complexes in various degassed solvents at RT.

Fig. S8: Normalized absorption and emission spectra of HDBPz-11,12-DO.

Fig. S9: Normalized absorption and emission spectra of HPPz-11,12-DO.

Fig. S10: photophysical properties of $(DBQ)_2Ir(acac)$ in THF/H₂O mixtures with different water fractions and relationships between the ratio of I/I_0 and water fraction in THF/H₂O mixtures.

Fig. S11: Absorption, excitation and emission spectra of (DBQ)₂Ir(acac) in neat film and crystal.

Fig. S12: PL spectra of $(DBPz-11,12-DO)_2Ir(acac)$ in THF/H₂O mixtures and relation -ships between the ratio of I/I_0 and water fraction in THF/H₂O mixtures.

Fig. S13: Absorption spectra of Ir(III) complexes in THF/H₂O mixtures.

Fig. S14: PL decay spectra of (DBPz-11,12-DO)₂Ir(acac) in THF/H₂O mixtures.

Fig.S15: PL spectra of Ir(III) complexes in degassed THF solutions from 10^{-3} M to 10^{-6} M.

Fig. S16: Absorption, excitation and emission spectra of Ir(III) complexes in neat

films.

Fig. S17: Transient PL decay curves of Ir(III) complexes in degassed CH_2Cl_2 solutions.

Fig. S18: ¹H NMR spectrum of HDBPz-11,12-DO.

Fig. S19: ¹³C NMR spectrum of HDBPz-11,12-DO.

Fig. S20: ¹H NMR spectrum of (DBPz-11,12-DO)₂Ir(acac).

Fig. S21: ¹³C NMR spectrum of (DBPz-11,12-DO)₂Ir(acac).

Fig. S22: ¹H NMR spectrum of HPPz-11,12-DO.

Fig. S23: ¹H NMR spectrum of HPPz-11,12-DO.

Fig. S24: ¹H NMR spectrum of (PPz-11,12-DO)₂Ir(acac).

Fig. S25: ¹³C NMR spectrum of (PPz-11,12-DO)₂Ir(acac).

Fig. S26: MALDI-TOF-MS spectrum of HDBPz-11,12-DO.

Fig. S27: MALDI-TOF-MS spectrum of HPPz-11,12-DO.

Fig. S28: MALDI-TOF-MS spectrum of (DBPz-11,12-DO)₂Ir(acac).

Fig. S29: MALDI-TOF-MS spectrum of (PPz-11,12-DO)₂Ir(acac).

 Table S1: Crystal data and refinement parameters for (DBQ)₂Ir(acac) and (PPz-11,12

 -DO)₂Ir(acac).

Table S2: Selected bond lengths (Å) and angles (°) for complex (DBQ)₂Ir(acac).

Fig. S1. TGA curves of Ir(III) complexes under nitrogen atmosphere.

Fig. S2. ORTEP plot of $(DBQ)_2Ir(acac)$ with 50% probability ellipsoids, Hydrogen atoms are omitted for clarity.

Fig. S3. The crystal-packing diagram of $(DBQ)_2Ir(acac)$ (π - π , C-H··· π , C-H···O and C-H···H···C intermolecular interactions are marked by dashed lines).

Fig. S4. UV-Vis absorption spectra of free ligands in DCM at RT.

Fig. S5. Normalized emission spectra of Ir(III) complexes in dilute 2-MeTHF (10⁻⁵ M) at 77 K.

Fig. S6. Normalized absorption spectra of Ir(III) complexes in various solvents at RT, (DBPz-11,12-DO)₂Ir(acac) (a) and (PPz-11,12-DO)₂Ir(acac) (b).

Fig. S7. Normalized emission spectra of the two Ir(III) complexes in various degassed solvents at RT, (a) $(DBPz-11,12-DO)_2Ir(acac)$, Ex=420 nm; and (b) $(PPz-11,12 - DO)_2Ir(acac)$, Ex=450 nm.

Fig. S8. Normalized absorption (a) and emission (b) spectra of HDBPz-11,12-DO in various solvents, Ex=380 nm.

Fig. S9. Normalized absorption (a) and emission (b) spectra of HPPz-11,12-DO in various solvents, Ex=350 nm.

Fig. S10. a) PL spectra of $(DBQ)_2Ir(acac)$ in THF/H₂O mixtures with different water fractions and a concentration of 10⁻⁵ M at 298 K; b) relationships between the ratio of I/I_0 and the emission maximum *versus* water fraction in THF/H₂O mixtures; I_0 and Iwere the maximum PL intensity in pure THF and in THF/H₂O mixtures, respectively, Ex=370 nm. c) Transient PL decay spectra of $(DBQ)_2Ir(acac)$ in THF/H₂O mixtures; d) lifetime *versus* water fractions in THF/H₂O mixtures.

Fig. S11. PL spectra of (DBQ)₂Ir(acac) in film and crystal, Ex=390 nm.

Fig. S12. a) PL spectra of $(DBPz-11,12-DO)_2Ir(acac)$ in THF/H₂O mixtures with different water fractions and a concentration of 10⁻⁵ M at 298 K; b) relationships between the ratio of I/I_0 and the emission maximum *versus* water fraction in THF/H₂O mixtures; I_0 and I were the maximum PL intensity in pure THF and in THF/H₂O mixtures, respectively, Ex=420 nm.

Fig. S13. Absorption spectra of $(DBPz-11,12-DO)_2Ir(acac)$ (a) and $(PPz-11,12-DO)_2$ Ir(acac) (b) in THF/H₂O mixtures with different water fractions and a concentration of 10⁻⁵ M at 298 K.

Fig. S14. a) Transient PL decay spectra of (DBPz-11,12-DO)₂Ir(acac) in THF/H₂O

mixtures with different water fractions and a concentration of 10^{-5} M at 298 K; b) Column diagrams of decay times *versus* water fractions in THF/H₂O mixtures.

Fig. S15. PL spectra of $(DBPz-11,12-DO)_2Ir(acac)$ (a) and $(PPz-11,12-DO)_2Ir(acac)$ (b) in THF solution upon concentration from 10^{-3} M to 10^{-6} M, and the absent of the emission spectra of $(DBPz-11,12-DO)_2Ir(acac)$ in 10^{-4} M resulted from limitations of the instrument, excited at 420 and 450 nm, respectively.

Fig. S16. Absorption, excitation and emission spectra of (DBPz-11,12-DO)₂Ir(acac) and (PPz-11,12-DO)₂Ir(acac) in neat film, excited at 420 and 450 nm, respectively.

Fig. S17. Transient PL decay curves of $(DBPz-11,12-DO)_2Ir(acac)$ (a) and $(PPz-11,12-DO)_2Ir(acac)$ (b) in degassed CH_2Cl_2 solutions.

Fig. S18. ¹H NMR spectrum of HDBPz-11,12-DO (400 MHz, CDCl₃).

Fig. S19. ¹³C NMR spectrum of HDBPz-11,12-DO (125 MHz, CDCl₃).

Fig. S20. ¹H NMR spectrum of (DBPz-11,12-DO)₂Ir(acac) (400 MHz, CDCl₃).

Fig. S21. ¹³C NMR spectrum of (DBPz-11,12-DO)₂Ir(acac) (125 MHz, CDCl₃).

Fig. S22. ¹H NMR spectrum of HPPz-11,12-DO (400 MHz, CDCl₃).

Fig. S23. ¹H NMR spectrum of HPPz-11,12-DO (125 MHz, CDCl₃).

Fig. S24. ¹H NMR spectrum of (PPz-11,12-DO)₂Ir(acac) (400 MHz, CDCl₃).

Fig. S25. ¹³C NMR spectrum of (PPz-11,12-DO)₂Ir(acac) (125 MHz, CDCl₃).

Fig. S26. MALDI-TOF-MS spectrum of HDBPz-11,12-DO.

Fig. S28. MALDI-TOF-MS spectrum of (DBPz-11,12-DO)₂Ir(acac).

Fig. S29. MALDI-TOF-MS spectrum of (PPz-11,12-DO)₂Ir(acac).

Table S1. Crystal data and refinement parameters for complexes (DBQ) ₂ Ir(acac)	and
---	-----

Sample	(DBQ) ₂ Ir(acac)	(PPz-11,12-DO) ₂ Ir(acac)			
Empirical formula	C ₃₈ H ₂₆ Cl ₃ IrN ₄ O ₂	C ₈₁ H ₉₃ IrN ₄ O ₆			
Formula weight	869.18	1410.79			
Temperature	173(0) K	296(2) K			
Wavelength	0.71073 Å	1.34139 Å			
Crystal system	Triclinic	Triclinic			
Space group	<i>P</i> -1	<i>P</i> -1			
	a = 9.9655(9) Å	a = 13.2845(7) Å			
	b=12.2501(11)Å $b=16.5525(8)Å$				
Unit cell dimensions	c = 13.6017(12) Å	c = 17.2928(11)Å			
	$\alpha = 85.163(2)^{\circ}$	$\alpha = 82.589(4)^{\circ}$			
	$\beta = 88.640(2)^{\circ}$	$\beta = 74.698(4)^{\circ}$			
	$\gamma = 80.607(2)^{\circ}$	$\gamma = 76.485(3)^{\circ}$			
Volume	1632.3(3) Å ³	3557.0(4)Å ³		3557.0(4)Å ³	
Ζ	2	2			
Density (calculated)	1.768 mg/m ³	1.317 mg/m ³			
Absorption coefficient	4.378 mm ⁻¹	2.684 mm ⁻¹			
F(000)	852.0	1464		1464	
Crystal size	$0.18\times0.12\times0.08\ mm^3$	0.20 x 0.08 x 0.04 mm ³		0.20 x 0.08 x 0.04 mm ³	
Theta range for data	3.006 to 55.408°	3.068 to 55.065°			
collection					
Index ranges	-13<=h<=13, -15<=k<=16, -	-15<=h<=16, -20<=k<=18, -			
	17<=1<=17	18<=l<=21			

$(PPz-11, 12-DO)_2Ir(3)$	acac).	
--------------------------	--------	--

Reflections collected	14843	36841	
Independent reflections	7391 [$R_{int} = 0.0404$]	13393 [R(int) = 0.0660]	
Completeness to theta =	95.7 %	99.3%	
53.594°			
Absorption correction	Semi-empirical from equivalents		
Max/min transmission	0.7508 / 0.4415	0.7508 / 0.4952	
Refinement method	Full-matrix-block least-squares on F ²		
Data/restraints/parameters	7391/0/435	13393 / 186 / 834	
Goodness-of-fit on F ²	1.030	1.031	
Final R indices	$R_1 = 0.0399, wR_2 = 0.1040$	R1 = 0.0623, wR2 = 0.1613	
[I>2sigma(I)]			
R indices (all data)	$R_1 = 0.0478, wR_2 = 0.1088$	R1 = 0.0992, wR2 = 0.1898	
Extinction coefficient	n/a	n/a	
Largest diff. peak and	1.66 and -1.37 e. Å ⁻³	0.840 and -1.504 e. Å ⁻³	
hole			
CCDC number	1914079	1914075	

Table S2. Selected bond lengths (Å) and angles (°) for complex (DBQ)_2Ir(acac)

bond leng	gths (Å)	Bond an	ngles (°)
Ir1-N1	2.036(4)	O2-Ir1-O1	88.18(15)
Ir1-N3	2.034(4)	C17-Ir1-N3	81.51(19)
Ir1-C14	2.014(5)	C14-Ir1-N1	81.75(19)
Ir1-C17	1.990(5)	N3-Ir1-N1	175.22(17)
Ir1-O1	2.146(4)	C14-Ir1-O2	173.00(16)
Ir1-O2	2.145(4)	C17-Ir1-O1	174.03(17)