Supporting information

Controllable fabrication of stimuli-responsive fluorescent silica nanoparticles with a tetraphenylethene-functionalized carboxylate gemini surfactant

Saisai Yan,^{ab} Zhinong Gao,^{*ab} Jia Han,^{ab} Zhengqin Zhang,^{ab} Fei Niu^a and Yingfang Zhang^{ab}

^a Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China.

^b Engineering Research Center of Organosilicon Compounds & Materials of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China.

*Corresponding author: Zhinong Gao E-mail: gzn@whu.edu.cn

Scheme S1. (a) Synthetic route of the TPE-functionalized carboxylate gemini surfactant N_{16} -TPE- N_{16} (4). The corresponding ¹H and ¹³C NMR spectra of compound 1 (b), 2 (c), 3 (d) and 4 (e).

Scheme S2. Hydrolysis and condensation reactions of silane precursor TEOS for SiO₂ (a) and mixed organosilane precursors TEOS/APS for SiO₂-NH₂ (b).

Figure S1. Representative SEM (a) and TEM (b) images of SiO₂-NH₂.

Figure S2. (a) Fluorescence spectra of SiO₂-NH₂-F induced by other water-soluble organic solvent (0.4 mg/mL). (b) Fluorescence intensity ratios of SiO₂-NH₂-F in aqueous dispersion (0.4 mg/mL), I_0 is the final fluorescence intensity at 416 nm and I is the corresponding fluorescence intensity at different times. (c) Time-dependent evolution of the fluorescence intensity of SiO₂-NH₂-F. (d) Photostability of SiO₂-NH₂-F upon continuous UV excitation. I_0 is the initial fluorescence intensity at 416 nm and I is the fluorescence intensity of the samples after UV irradiation.

Figure S3. Representative SEM images of SiO_2 -NH₂-F-0 (a) and CTAB-SNs (b).

Figure S4. (a) EDX patterns of SiO₂-NH₂ and SiO₂-NH₂-F. (b) Fluorescence spectra of SiO₂-NH₂-F and SiO₂-NH₂-F@GA. Inset: Photographs of SiO₂-NH₂-F and SiO₂-NH₂-F@GA taken under the room light. (c) SEM images of SiO₂-NH₂-F@GA.

Figure S5. SEM images of SiO₂-NH₂-F in the dry powder.

Figure S6. (a) Absorption spectra of SiO_2 -NH₂-F at different states. (b) Tyndall phenomenon of SiO_2 -NH₂-F aqueous dispersion at different states.

Figure S7. SEM images of SiO₂-NH₂-F treated with different temperatures: (a) 30, (b) 50, (c) 70, (d) 90 °C.

Figure S8. (a) Plot of conductivity (κ) versus the concentration of N₁₆-TPE-N₁₆. (b) Absorption spectra of N₁₆-TPE-N₁₆ at different concentrations. (c) The linear relationship between the concentrations of N₁₆-TPE-N₁₆ and absorbance data at 325 nm by the UV-Vis analysis. (d) UV-Vis absorption (black line) and fluorescence excitation (blue line) spectra of N₁₆-TPE-N₁₆ recorded below and above the CMC.

Figure S9. (a) Photographs of N_{16} -TPE- N_{16} aqueous solution when they were mixed with ethanol and *n*-hexane under the 365 nm UV irradiation. (b) Photostability of N_{16} -TPE- N_{16} upon continuous UV excitation at different concentrations. I_0 is the initial fluorescence intensity at 480 nm and I is the fluorescence intensity of the samples after UV irradiation. (c) Time-dependent evolution of the fluorescence intensity of N_{16} -TPE- N_{16} at different concentrations. (d) Absorption spectra of N_{16} -TPE- N_{16} at different pH values.

Figure S10. Chemical structural transformation of N_{16} -TPE- N_{16} at different H⁺ concentrations.

Figure S11. SEM images of AIE-SNs obtained under different concentrations of N_{16} -TPE- N_{16} : (a) 100, (b) 200, (c) 300, (d) 400, (e) 500, (f) 600, (g) 700, (h) 800, (i) 1000 μ M.

Figure S12. EDX patterns (a) and IR spectra (b) of AIE-300-F, AIE-400-F and AIE-600-F.

Figure S13. Photostability of AIE-300-F, AIE-400-F and AIE-600-F upon continuous UV excitation (a) and time-dependent evolution of the fluorescence intensity at different times (b). I_0 is the initial fluorescence intensity at 416 nm and *I* is the seasonable fluorescence intensity of the samples.

Figure S14. SEM images of AIE-300-F (a, d), AIE-400-F (b, e) and AIE-600-F (c, f) at pH = 2 and 3, respectively.

Figure S15. Absorption spectra of AIE-300-F (a), AIE-400-F (b) and AIE-600-F (c) at different states.

Figure S16. SEM images of AIE-300-F (a, b, c), AIE-400-F (d, e, f) and AIE-600-F (g, h, i) treated with different temperatures.

Table S1. The zeta-potential (ζ -potential) results of the SiO₂-NH₂, SiO₂-NH₂-F, AIE-300-F, AIE-400-F, AIE-600-F and CTAB-SNs.

Samples	ζ (mv)
SiO ₂ -NH ₂	-1.55
SiO ₂ -NH ₂ -F	1.02
AIE-300-F	-3.11
AIE-400-F	-3.58
AIE-600-F	-4.39
CTAB-SNs	-46.5

Table S2. The elemental content (C, H, O, N) of as-prepared SiO₂-NH₂, SiO₂-NH₂-F, AIE-300-F, AIE-400-F and AIE-600-F by elemental analysis and EDX.

Samples -	Elemental content (wt. %)			
	С	Н	0	Ν
SiO ₂ -NH ₂	10.93	4.477	27.91	4.019
SiO ₂ -NH ₂ -F	15.56	5.326	14.79	5.229
AIE-300-F	15.89	5.370	18.18	5.294
AIE-400-F	15.94	5.089	16.33	5.027
AIE-600-F	17.70	5.304	20.53	4.962

Samplas	Volume ratio of	C^{a}	Mambalazy	
Samples	TEOS/APS	(µM)	Morphology	
SiO ₂ -NH ₂	1:1	0	nanospheres	
SiO ₂ -NH ₂ -F	1:1	0	nanospheres	
SiO ₂ -NH ₂ -F-0	1:1	0	large aggregates	
SiO ₂ -NH ₂ -F-3	3:1	0	rough nanospheres	
SiO ₂ -NH ₂ -F-5	5:1	0	bone-like nanorods	
SiO ₂ -NH ₂ -F-7	7:1	0	small nanorods	
SiO ₂ -NH ₂ -F-9	9:1	0	small nanorods	
CTAB-SNs	/	0	small nanorods	
AIE-100-F	1:1	100	nanospheres	
AIE-200-F	1:1	200	nanospheres	
AIE-300-F	1:1	300	short nanorods	
AIE-400-F	1:1	400	long nanorods	
AIE-500-F	1:1	500	long and short nanorods	
AIE-600-F	1:1	600	short nanorods	
AIE-700-F	1:1	700	short nanorods	
AIE-800-F	1:1	800	disordered short nanorods	
AIE-1000-F	1:1	1000	irregular nanorods	

Table S3. A summary of experimental data and processing parameters.

 $^{\it a}$ The initial concentration of $N_{16}\text{-}TPE\text{-}N_{16}$ in the reaction system.

Table S4. The sensitivity of SiO₂-NH₂-F, AIE-300-F, AIE-400-F and AIE-600-F to pH changes calculated from the fluorescence intensity, especially for pH = 1 and 3.

Samples –	I / I_0		$(I - I_0)$ / $I_0 imes$ 100%	
	pH = 1	pH = 3	pH = 1	pH = 3
SiO ₂ -NH ₂ -F	0.99	0.52	-1.41	-92.38
AIE-300-F	1.04	0.55	3.75	-82.12
AIE-400-F	1.05	0.56	4.48	-77.69
AIE-600-F	1.03	0.68	2.91	-46.54

^{*a*} I is the final fluorescence intensity at 416 nm after overnight and I_0 is the initial fluorescence

intensity at 416 nm dispersed in water with different pH values.