Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Support information for

## Epitaxial Growth of Large-scale $In_2S_3$ Nanoflakes and the Construction of High

## Performance In<sub>2</sub>S<sub>3</sub>/Si Photodetector

Jianting Lu<sup>1</sup>, Zhaoqiang Zheng<sup>1, 2\*</sup>, Wei Gao<sup>1</sup>, Jiandong Yao<sup>3</sup>, Yu Zhao<sup>1</sup>, Ye Xiao<sup>1</sup>, Bing Wang<sup>4</sup>

Jingbo Li<sup>1, 5\*</sup>

<sup>1</sup> School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006,

Guangdong, P. R. China.

<sup>2</sup> Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, P. R. China.

<sup>3</sup> State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.

<sup>4</sup> Institute of Micro-nano Optoelectronic Technology, Shenzhen Key Lab of Micro-nano Photonic Information Technology, College of Electronic Science and Technology, Shenzhen University, Shenzhen, 518060, Guangdong, P. R. China.

<sup>5</sup> State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China.

\*Corresponding authors: zhengzhq5@mail2.sysu.edu.cn and jbli@semi.ac.cn



**Figure S1.** Compatibility between  $In_2S_3$  and Si. Since both  $In_2S_3$  and Si are non-layered structures, there are many unsaturated dangling bonds on the surface of S atoms and Si atoms, as shown on the left. After the transfer of  $In_2S_3$  onto Si, since the electronegativity of the S atom is greater than that of the Si atom, the unsaturated dangling bonds on the surface Si atoms will be attracted to the surface of the S atoms, as shown on the right. Therefore,  $In_2S_3$  and Si will be tightly packed together to form an excellent heterojunction.



**Figure S2.** Optical images of the as-grown  $\beta$ -In<sub>2</sub>S<sub>3</sub> flakes obtained at different temperatures: (a) 900 °C. (b) 950 °C. (c) 980 °C. (d) 1020 °C. As can be seen, we have prepared In<sub>2</sub>S<sub>3</sub> nanoflakes under various temperatures. With the increase of the growth temperature, the size of the In<sub>2</sub>S<sub>3</sub> nanoflakes increases. When the growth temperature increases to be more than 980 °C, the size slightly declines. Therefore, 980 °C is chosen as the optimum growth temperature in this work.



Figure S3. XPS pattern of  $In_2S_3$ . (a) Full spectrum of  $In_2S_3$ . Core spectrum of (b)  $In_{3d}$  and (c)  $S_{2p}$ .



Figure S4. PL spectrum of original  $In_2S_3$  on the mica substrate (before) and transferred  $In_2S_3$  on  $SiO_2/Si$  substrate (after).



Figure S5. (a) Optical microscope image of the  $In_2S_3/Si$  device. (b) The PL mapping of the  $In_2S_3/Si$  device, corresponding to the red rectangle in (a). Recognizable PL quenching is observed at the  $In_2S_3/Si$  heterojunction.



Figure S6.  $I_{ds}$ - $V_{ds}$  curves of planar  $In_2S_3$  device under dark and light illumination. The nearly linear I-V curves prove the good Ohmic-contacts for Ti/Au-In<sub>2</sub>S<sub>3</sub>.



**Figure S7.** The fitting curve of barrier height of the In<sub>2</sub>S<sub>3</sub>/Si heterojunction by using the thermionic emission theory-based diode equation.

The current through a Schottky junction can be described by the well-known Richardson–Dushman thermionic emission theory<sup>1-2</sup>:

$$I = I_s \left[ \exp\left(\frac{eV}{nkT}\right) - 1 \right]$$
(1)

$$I_s = A_1 A^* T^2 exp(-\frac{e\phi_b}{kT})$$
<sup>(2)</sup>

where  $I_S$  is the reverse saturation current, e is the electronic charge, V is the bias voltage, n is the ideality factor, k is the Boltzmann constant, T is the absolute temperature, A<sub>1</sub> is the area of the device,  $\phi_b$  is the Schottky barrier height, and A\* is the effective Richardson constant (32 A cm<sup>-2</sup> K<sup>-2</sup> for p-type Si). On the basis of the above equations, by fitting the dark I–V curves of these two devices,  $\phi_b$  can be deduced to be 0.479 eV for the graphene/Si Schottky junction.



**Figure S8.** Photocurrent versus illumination power density at the applied voltage of (a) -2 V; (b) - 1.5 V (c) -1 V (d) -0.5 V.



Figure S9. The magnified and normalized plot of one response cycle of pure  $In_2S_3$  device.



Figure S10. The transfer curve of planar In<sub>2</sub>S<sub>3</sub> device.

The electron mobility can be acquired by the following equation<sup>3-4</sup>

$$\mu = \frac{\partial I_{ds}}{\partial V_g} \left( \frac{Ld}{W \varepsilon_o \varepsilon_r V_{ds}} \right)$$

 $\partial I_{ds}$ 

where L and W are the length and width of the channel,  $\overline{\partial V_g}$  is slope of the transfer curve,  $\mu$  is mobility,  $\varepsilon_r$  is the relative static permittivity,  $\varepsilon_0$  is the electric constant, and d is the thickness of the SiO<sub>2</sub> layer. Herein,  $V_{ds} = 2$  V, L = 14  $\mu$ m, W = 22  $\mu$ m, and d = 300 nm. Then,  $\varepsilon_0 = 8.85 \times 10^{-12}$  F/m,

 $\frac{\partial I_{ds}}{\partial V}$ 

 $\varepsilon_r = 3.9$ , and  $\partial V_g = 4.58 \times 10^{-7}$  A/V. Based on the data above, the electron mobility is calculated to be 10.3 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>.

| Devices                              | Method | Lateral | R        | D*                    | On/off | Rise/decay | Ref. |
|--------------------------------------|--------|---------|----------|-----------------------|--------|------------|------|
|                                      |        | (µm)    | (A/W)    | (Jones)               | ratio  | time (ms)  |      |
| In <sub>2</sub> S <sub>3</sub> /Si   | PVE    | ~ 161   | 579.6    | 2.1×10 <sup>11</sup>  | ~ 552  | 9/0.131    | Ours |
| In <sub>2</sub> S <sub>3</sub>       | CVD    | ~ 10    | 137      | 7.74×10 <sup>10</sup> | ND     | 6/8        | 5    |
| In <sub>2</sub> S <sub>3</sub>       | HT     | ~ 5     | ND       | ND                    | 16     | 2000/100   | 6    |
| CdTe                                 | CVD    | 5-11    | 0.6*10-3 | 109                   | 27     | 18.4/14.7  | 7    |
| SnTe                                 | PVD    | ~ 30    | 71       | ND                    | ~ 2    | 210/730    | 8    |
| PbS                                  | HT     | ~ 1     | 0.472    | ND                    | 100    | ND         | 9    |
| PbS                                  | CVD    | 2-2.6   | 1621     | 1011                  | ~ 2    | 300/300    | 10   |
| Pb <sub>1-x</sub> Sn <sub>x</sub> Se | CVD    | ~ 15    | 5.95     | ND                    | ~ 3    | 900/740    | 11   |
| Te                                   | CVD    | 6-10    | 160      | ND                    | ~3     | 4400/2800  | 12   |
| Commercial                           | ND     | ND      | 0.5      | 3×10 <sup>12</sup>    | ND     | ND         | 13   |
| Si                                   |        |         |          |                       |        |            |      |

Table S1. Key parameters comparison between our In<sub>2</sub>S<sub>3</sub>/Si device and other non-layered 2D materials based photodetectors. Commercial Si device is also included.

Ref.: reference. CVD: chemical vapor deposition. PVE: physical vapor epitaxy. ME: mechanical exfoliation. HT: Hydrothermal. ND: no data. Gr: graphene.

## Reference

1. Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T., MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High-Detectivity, Self-Driven Visible-Near Infrared Photodetectors. *Adv. Funct. Mater.* **2015**, *25* (19), 2910-2919.

2. Zheng, Z. Q.; Zhu, L. F.; Wang, B., In2O3 Nanotower Hydrogen Gas Sensors Based on Both Schottky Junction and Thermoelectronic Emission. *Nanoscale Res. Lett.* **2015**, *10*, 293.

3. Li, B.; Huang, L.; Zhong, M. Z.; Li, Y.; Wang, Y.; Li, J. B.; Wei, Z. M., Direct Vapor Phase Growth and Optoelectronic Application of Large Band Offset SnS2/MoS2 Vertical Bilayer Heterostructures with High Lattice Mismatch. *Adv. Electron. Mater.* **2016**, *2* (11), 1600298.

4. Li, Y. T.; Wang, Y.; Huang, L.; Wang, X. T.; Li, X. Y.; Deng, H. X.; Wei, Z. M.; Li, J. B., Anti-Ambipolar Field-Effect Transistors Based On Few-Layer 2D Transition Metal Dichalcogenides. *ACS Appl. Mater. Interfaces* **2016**, *8* (24), 15574-15581.

5. Huang, W.; Gan, L.; Yang, H.; Zhou, N.; Wang, R.; Wu, W.; Li, H.; Ma, Y.; Zeng, H.; Zhai, T., Controlled Synthesis of Ultrathin 2D  $\beta$ -In<sub>2</sub>S<sub>3</sub> with Broadband Photoresponse by Chemical Vapor Deposition. *Adv. Funct. Mater.* **2017**, 1702448.

6. Acharya, S.; Dutta, M.; Sarkar, S.; Basak, D.; Chakraborty, S.; Pradhan, N., Synthesis of Micrometer Length Indium Sulfide Nanosheets and Study of Their Dopant Induced Photoresponse Properties. *Chem. Mater.* **2012**, *24* (10), 1779-1785.

7. Cheng, R.; Wen, Y.; Yin, L.; Wang, F.; Wang, F.; Liu, K.; Shifa, T. A.; Li, J.; Jiang, C.; Wang, Z.; He, J., Ultrathin Single-Crystalline CdTe Nanosheets Realized via Van der Waals Epitaxy. *Adv. Mater.* **2017**, *29* (35), 1703122.

8. Yang, J.; Yu, W.; Pan, Z.; Yu, Q.; Yin, Q.; Guo, L.; Zhao, Y.; Sun, T.; Bao, Q.; Zhang, K., Ultra-Broadband Flexible Photodetector Based on Topological Crystalline Insulator SnTe with High Responsivity. *Small* **2018**, e1802598.

9. Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C., Ultrathin PbS Sheets by Two-dimensional Oriented Attachment. *Science* **2010**, *329* (5991), 550-553.

10. Wen, Y.; Wang, Q.; Yin, L.; Liu, Q.; Wang, F.; Wang, F.; Wang, Z.; Liu, K.; Xu, K.; Huang, Y.; Shifa, T. A.; Jiang, C.; Xiong, J.; He, J., Epitaxial 2D PbS Nanoplates Arrays with Highly Efficient Infrared Response. *Adv. Mater.* **2016**, *28* (36), 8051-8057.

11. Wang, Q.; Xu, K.; Wang, Z.; Wang, F.; Huang, Y.; Safdar, M.; Zhan, X.; Wang, F.; Cheng, Z.; He, J., Van Der Waals Epitaxial Ultrathin Two-dimensional Nonlayered Semiconductor for Highly Efficient Flexible Optoelectronic Devices. *Nano Lett.* **2015**, *15* (2), 1183-1189.

12. Wang, Q.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z.; He, J., Van der Waals Epitaxy and Photoresponse of Hexagonal Tellurium Nanoplates on Flexible Mica Sheets. *ACS Nano* **2014**, *8* (7), 7497-7505.

13. Saran, R.; Curry, R. J., Lead Sulphide Nanocrystal Photodetector Technologies. *Nat. Photonics* **2016**, *10* (2), 81-92.