Supporting Information

Pillar[5]arenes: a New Class of *AIE*gen Macrocycles Used for Luminescence Sensing of Fe³⁺ Ion

Jin-Fa Chen, Guoyun Meng, Qian Zhu, Songhe Zhang and Pangkuan Chen*

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China.

1. Materials and methods

UV-visible absorption spectra were recorded on a Cary 300 UV-Vis spectrophotometer. Fluorescence spectra were recorded on a Lengguang Tech F97 Pro spectrophotometer. Fluorescent quantum efficiencies were determined using a Hamamatsu Quantaurus-QY spectrometer (C11347).

Crystal structure were recorded on a Bruker SMART APEX II X-ray single crystal diffractometer. Single-crystals were obtained by slow evaporation of the solutions of **MeP5** in EtOH/CH₂Cl₂ (1:1, v/v).

Dynamic Light Scattering (DLS) experiments were carried out with Malvern Instrument Zetasizer Nano. Scanning electron microscopy image was performed on a field emission SEM (JSM-7500F).

2. Characterization

Figure S1. Emission spectrum of solids. (A) **MeP5** ($\lambda_{ex} = 271 \text{ nm}$); (B) **EtP5** ($\lambda_{ex} = 285 \text{ nm}$); (C) **PrP5** ($\lambda_{ex} = 280 \text{ nm}$); (D) **BuP5** ($\lambda_{ex} = 275 \text{ nm}$); (E) **DBuP5** ($\lambda_{ex} = 285 \text{ nm}$); (F) **DBP5** ($\lambda_{ex} = 285 \text{ nm}$). Inset: photographs of solids under 254 nm UV irradiation.

Figure S2. The photophysical properties of **EtP5** (5.0×10^{-4} M). A) emission spectra of **EtP5** in EtOH/CH₂Cl₂ mixtures with different volume fractions of ethanol ($\lambda_{ex} = 290$ nm); B) emission intensities. Inset: photographs in CH₂Cl₂ and EtOH/CH₂Cl₂ mixtures ($f_{EtOH} = 98\%$) taken under the 254 nm UV irradiation; C) fluorescence quantum yields; D) emission spectra of **EtP5** solution ($f_{EtOH} = 98\%$) upon addition of Fe³⁺; E) intensities and quenching ratio of **EtP5** solution ($f_{EtOH} = 98\%$) upon addition of Fe³⁺; F) the photograph of the linear range of **EtP5** solution ($f_{EtOH} = 98\%$) upon addition of Fe³⁺.

Figure S3. The photophysical properties of **PrP5** (5.0×10^{-4} M). A) emission spectra of **PrP5** in EtOH/CH₂Cl₂ mixtures with different volume fractions of ethanol ($\lambda_{ex} = 275$ nm); B) emission intensities. Inset: photographs in CH₂Cl₂ and EtOH/CH₂Cl₂ mixtures ($f_{EtOH} = 99\%$) taken under the 254 nm UV irradiation; C) fluorescence quantum yields; D) emission spectra of **PrP5** solution ($f_{EtOH} = 99\%$) upon addition of Fe³⁺; E) intensities and quenching ratio of **PrP5** solution ($f_{EtOH} = 99\%$) upon addition of Fe³⁺; F) the photograph of the linear range of **PrP5** solution ($f_{EtOH} = 99\%$) upon addition of Fe³⁺.

Figure S4. The photophysical properties of **BuP5** (5.0×10^{-4} M). A) emission spectra of **BuP5** in EtOH/CH₂Cl₂ mixtures with different volume fractions of ethanol ($\lambda_{ex} = 300$ nm); B) emission intensities. Inset: photographs in CH₂Cl₂ and EtOH/CH₂Cl₂ mixtures ($f_{EtOH} = 99\%$) taken under the 254 nm UV irradiation; C) fluorescence quantum yields; D) emission spectra of **BuP5** solution ($f_{EtOH} = 99\%$) upon addition of Fe³⁺; E) intensities and quenching ratio of **BuP5** solution ($f_{EtOH} = 99\%$) upon addition of Fe³⁺; F) the photograph of the linear range of **BuP5** solution ($f_{EtOH} = 99\%$) upon addition of Fe³⁺.

Figure S5. The photophysical properties of **DBuP5** (5.0×10^{-4} M). A) emission spectra of **DBuP5** in EtOH/CH₂Cl₂ mixtures with different volume fractions of ethanol ($\lambda_{ex} = 265$ nm); B) emission intensities. Inset: photographs in CH₂Cl₂ and EtOH/CH₂Cl₂ mixtures ($f_{EtOH} = 99\%$) taken under the 254 nm UV irradiation; C) fluorescence quantum yields; D) emission spectra of **DBuP5** solution ($f_{EtOH} = 99\%$) upon addition of Fe³⁺; E) intensities and quenching ratio of **DBuP5** solution ($f_{EtOH} = 99\%$) upon addition of Fe³⁺; F) the photograph of the linear range of **DBuP5** solution ($f_{EtOH} = 99\%$) upon addition of Fe³⁺.

Figure S6. The photophysical properties of **DBP5** (5.0×10^{-4} M). A) emission spectra of **DBP5** in EtOH/CH₂Cl₂ mixtures with different volume fractions of ethanol ($\lambda_{ex} = 290$ nm); B) emission intensities. Inset: photographs in CH₂Cl₂ and EtOH/CH₂Cl₂ mixtures ($f_{EtOH} = 99\%$) taken under the 254 nm UV irradiation; C) fluorescence quantum yields; D) emission spectra of **DBP5** solution ($f_{EtOH} = 99\%$) upon addition of Fe³⁺; E) intensities and quenching ratio of **DBP5** solution ($f_{EtOH} = 99\%$) upon addition of Fe³⁺; F) the photograph of the linear range of **DBP5** solution ($f_{EtOH} = 99\%$) upon addition of Fe³⁺; F) the photograph

Figure S7. Different concentrations emission spectra of MeP5 in EtOH/CH₂Cl₂ mixture ($f_{EtOH} = 98\%$, $\lambda_{ex} = 278$ nm).

Figure S8. Emission spectra of **MeP5** (2.0×10^{-5} M) in EtOH/CH₂Cl₂ mixtures with different EtOH fractions ($\lambda_{ex} = 278$ nm).

Figure S9. Emission spectra of **MeP5** (2.0×10^{-5} M) in EtOH/THF mixtures with different EtOH fractions ($\lambda_{ex} = 278$ nm).

Figure S10. The absorption spectra of MeP5 in EtOH/CH₂Cl₂ mixtures with different EtOH fractions ($c = 5.0 \times 10^{-4}$ M).

Figure S11. DLS data of the **MeP5** ($c = 5.0 \times 10^{-4}$ M) aggregates at $f_{\text{EtOH}} = 98\%$. Inset: Photo showing the Tyndall effect.

Figure S12. Emission spectra of **MeP5** (5.0×10^{-4} M) in hexane/CH₂Cl₂ mixtures with different hexane fractions ($\lambda_{ex} = 278$ nm).

Figure S13. Emission intensity at different time of **MeP5**: (A) in EtOH/CH₂Cl₂ ($f_{EtOH} = 98\%$), and (B) in hexane/CH₂Cl₂ ($f_{hexane} = 98\%$).

Figure S14. Emission spectra of the monomer (1,4-dimethoxy benzene) (5.0×10^{-4} M) in EtOH/CH₂Cl₂ mixtures with different EtOH fractions ($\lambda_{ex} = 290$ nm).

Figure S15. Plots of I/I_0 *vs* EtOH fractions of (A) **MeP5** and (B) monomer, where I_0 is the emission intensity in CH₂Cl₂.

Figure S16. Fluorescence of **MeP5** (5.0×10^{-4} M) with addition of Fe³⁺ (1.0×10^{-3} M) in the presence of competition ions (1.0×10^{-3} M) in EtOH/CH₂Cl₂ ($f_{EtOH} = 98\%$) mixtures.

Figure S17. DLS profiles of **MeP5** solution ($c = 5.0 \times 10^{-4}$ M, EtOH/CH₂Cl₂, $f_{EtOH} = 98\%$) and its mixture with Zn²⁺ ion (2 equiv) as another representative example.

Figure S18. (A) Overlap of the UV-vis adsorption spectra of Fe³⁺ (black) and the emission spectra of **MeP5** (blue); (B) absorption spectra of **MeP5**, Fe³⁺, and their mixture in EtOH/CH₂Cl₂ ($f_{\text{EtOH}} = 98\%$) mixtures.

Figure S19. UV-vis adsorption spectra of different metal ion solutions in EtOH/CH₂Cl₂ mixtures.

CCDC number	1910530
Empirical formula	$C_{45}H_{50}O_{10}$
Formula weight	750.85
Crystal system	Tetragonal
Space group	I 41/a
Temperature/K	296
a/Å	14.9363(10)
b/Å	14.9363(10)
c/Å	39.332(6)
$\alpha^{\prime \circ}$	90
β/°	90
$\gamma/^{\circ}$	90

Table S1. Details of the X-ray diffraction analysis of MeP5.

Volume/Å ³	8774.7(18)
Z	8
$D_{calcd}/g \cdot m^{-3}$	1.137
m/mm ⁻¹	0.080
F(000)	3200.0
Theta range/°	2.830-27.581
Limiting index	$\text{-19} \le h \le 18, \text{-17} \le k \le 19, \text{-31} \le l \le 51$
Reflections number	5062
Data/restraints/parameters	5062/0/255
Goodness-of-fit on F ²	1.001
R1, wR2 [obs I $\geq 2\sigma$ (I)]	0.0603, 0.1693
R1, wR2 (all data)	0.1333, 0.2291