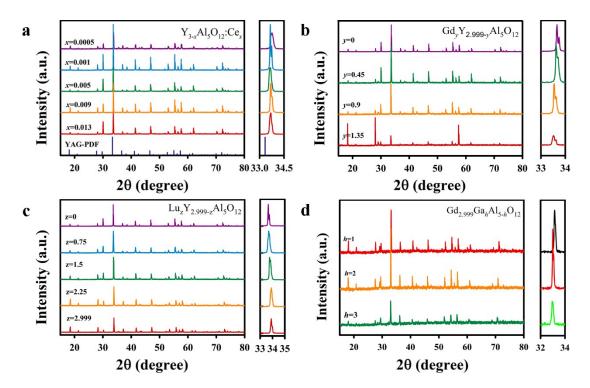
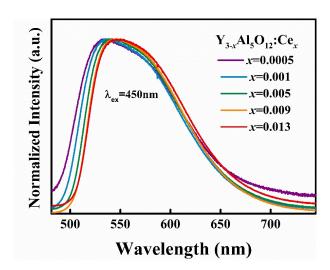
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

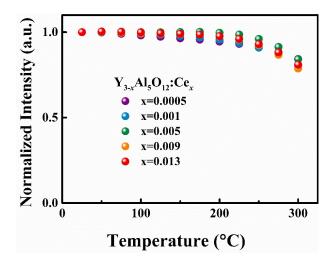
Electronic Supplementary Information

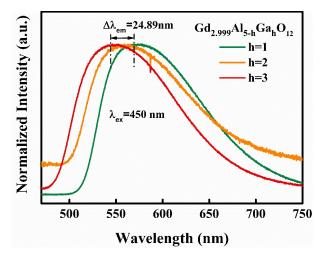

Searching for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation

Yirong Xu,^a Shuxing Li,*a Peng Zheng,^a Le Wang,*b Shihai You,^a Takashi Takeda,^c Naoto Hirosaki,^c and Rong-Jun Xie*a


a College of Materials, Xiamen University, Simingnan-Road 422, Xiamen 361005, P. R. China. E-mail: rjxie@xmu.edu.cn; lishuxing@xmu.edu.cn.

b College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China. E-mail: calla@cjlu.edu.cn


c Sialon Group, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0035, Japan.


Figure S1. XRD patterns of (a) $Y_{3-x}Al_5O_{12}$: Ce_x ($x = 0.0005 \sim 0.013$), (b) $Gd_yY_{2.999}$. $_yAl_5O_{12}$: $Ce_{0.001}$ ($y = 0 \sim 1.3$), (c) $Lu_zY_{2.999-z}Al_5O_{12}$: $Ce_{0.001}$ ($z = 0 \sim 2.999$) and (d) $Gd_{2.999}Al_{5-h}Ga_hO_{12}$: $Ce_{0.001}$ ($h = 1 \sim 3$) ceramics.

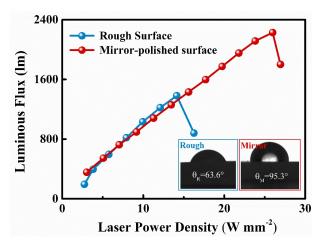

Figure S2. Normalized luminescence intensity *versus* the temperature of the YAG:Ce ceramics.

Figure S3. Normalized emission spectra of $Y_{3-x}Al_5O_{12}$: Ce_x ($x = 0.0005 \sim 0.013$) ceramics ($\lambda_{ex} = 450$ nm).

Figure S4. Normalized emission spectra of $Gd_{2.999}Al_{5-h}Ga_hO_{12}$: $Ce_{0.001}$ ($h=1\sim3$) ceramics ($\lambda_{ex}=450$ nm).

Figure S5. Thermal saturation evaluation for ceramics with different surface roughness. The insets show the corresponding contact angles.

Table S1. The relative densities (ρ_{rel}) of the sintered ceramics.

Samples	ρ_{rel} (%)
x = 0.0005	98.90
x = 0.001	98.12
x = 0.005	98.80
x = 0.009	99.12
x = 0.013	98.35
y = 0.45	98.68
y = 0.9	101.89
y = 1.35	100.08
z = 0.75	101.70
z = 1.5	99.20
z = 2.25	99.59
z = 2.999	99.94
h=1	98.45
h = 2	98.67
h=3	98.21
· · · · · · · · · · · · · · · · · · ·	

Video S1. The disastrous crack happens to the ceramics when the power density increases beyond the saturation threshold.

Video S2. The increase in temperature under the excitation of saturation thresholds in a fairly short time for $Y_{3-x}Al_5O_{12}$: Ce_x ceramics: (a) x = 0.001, (b) x = 0.005, (c) x = 0.009 and (d) x = 0.013.