## Efficient near IR porphyrins containing triphenylamine substituted anthryl donating group for dye sensitized solar cells

Jonnadula Venkata Suman Krishna,<sup>*a,b*</sup> Devulapally Koteshwar,<sup>*a,b*</sup> Towhid H. Chowdhury,<sup>[c]</sup> Suryaprakash Singh, <sup>*a,b*</sup> Idriss Bedja,<sup>d</sup> Ashraful Islam<sup>\*,c</sup> Lingamallu Giribabu<sup>\**a,b*</sup>

Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad-500007, (Telangana), India .Email: giribabu@iict.res.in. Phone: +91-40-27191724, Fax: +91-40-27160921

Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, India. Photovoltaic Materials Unit, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan.Email: slam.Asraful@nims.go.jp

Cornea Research Chair, Optometry Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia

|            | Table of Contents                                                                | Page No. |
|------------|----------------------------------------------------------------------------------|----------|
| Figure S1  | <sup>1</sup> H NMR spectrum (400 MHz, $CDCl_3$ ) of <b>1</b>                     | S3       |
| Figure S2  | HRMS of 1 (APPIFTMS)                                                             | S3       |
| Figure S3  | <sup>1</sup> H NMR spectrum (400 MHz, CDCl <sub>3</sub> ) of $2$                 | S4       |
| Figure S4  | HRMS of 2 (APPIFTMS)                                                             | S4       |
| Figure S5  | <sup>1</sup> H NMR spectrum (500 MHz, CDCl <sub>3</sub> ) of 4                   | S5       |
| Figure S6  | MALDI-TOF of 4.                                                                  | S5       |
| Figure S7  | <sup>1</sup> H NMR spectrum (500 MHz, $CDCl_3 + C_5D_5N$ ) of <b>LG19</b> .      | S6       |
| Figure S8  | MALDI-TOF of LG19                                                                | S6       |
| Figure S9  | <sup>1</sup> H NMR spectrum (300 MHz, $CDCl_3 + C_5D_5N$ ) of <b>LG20</b> .      | S7       |
| Figure S10 | MALDI-TOF of LG20                                                                | S7       |
| Figure S11 | <sup>1</sup> <i>H</i> NMR spectrum (300 MHz, $CDCl_3+C_5D_5N$ ) of <b>LG21</b> . | S8       |
| Figure S12 | MALDI-TOF of LG21                                                                | S8       |
| Figure S13 | <i>UV–visible absorption spectra of LG19, LG20 and LG21 in THF solvent.</i>      | S9       |
| Figure S14 | Theoretical absorption spectra of LG19, LG20 and LG21 Dyes by using              | S9       |
|            | B3LYP methodPCM model in tetrahydrofuran solvent with M06-2X                     |          |
|            | function.                                                                        |          |
| Figure S15 | Fluorescence spectra of LG19, LG20 and LG21 in THF solution.                     | S9       |
| Figure S16 | Singlet excited-state lifetimes of LG19, LG20 and LG21 in THF solution           | S11      |

| Figure S17 | Reduction spectra of dyes LG19, LG20 and LG21 in THF.                        | S11 |
|------------|------------------------------------------------------------------------------|-----|
| Figure S18 | Ionization potential (IP) of LG19 anchored to $TiO_2$ film                   | S12 |
| Figure S19 | Ionization potential (IP) of LG20 anchored to $TiO_2$ film                   | S12 |
| Figure S20 | Ionization potential (IP) of LG21 anchored to $TiO_2$ film                   | S13 |
| Figure S21 | Oxidative OTTLE studies of LG19, LG21 in 0.3 M TBAP/THF,                     | S14 |
|            | transparent Pt gauze working electrode, Pt wire counter electrode with       |     |
|            | an applied potential of +0.90 V (vs SCE/KCl)                                 |     |
| Figure S22 | Optimized structure of dyes and minimum energy in kcal/mol by using          | S14 |
|            | B3LYP method6-31G (d, p).                                                    |     |
| Figure S23 | Photocurrent action spectra of LG19 and LG21 using different                 | S14 |
|            | concentrations of TBP.                                                       |     |
| Figure S24 | Current–voltage characteristics of LG19Mand LG21 using different             | S15 |
|            | concentrations of TBP.                                                       |     |
| Figure S25 | Current–voltage characteristics of <b>LG20</b> based devices using 0.1M TBP. | S15 |
|            |                                                                              |     |
| Figure S26 | TG/DTG curves of LG19, LG21 porphyrins with heating rate 10°C.min-1          | S16 |
|            | under nitrogen.                                                              |     |
| Table S1   | Optimized energies, HOMO-LUMO energies and ground state                      | S16 |
|            | dipolemoment by DFT studies by using $B3LYP/6-31G(d,p)$ in vacuum.           |     |
| Table S2   | Singlet excited state properties of dyes by B3LYP method and M06-2X          | S17 |
|            | function in tetrahydrofuran solvent in PCM model. a Total minimum            |     |
|            | energy of dyads and triad, bvalues in eV, cvalues in debye units.            |     |
| Table S3   | Table S3: LG20 Devices data                                                  | S17 |
|            |                                                                              |     |



Figure S1. <sup>1</sup>H NMR spectrum (500 MHz, CDCl3) of 1.



Figure S3. <sup>1</sup>H NMR spectrum (500 MHz, CDCl3) of 2.



Figure S4. HRMS of 2 (APPI-FTMS).



## Figure S5. <sup>1</sup>H NMR spectrum (500 MHz, CDCl3) of 4.



Figure S6. MALDI-TOF of 4.







Figure S8. MALDI-TOF of LG19.



Figure S9. <sup>1</sup>H NMR spectrum (500 MHz, CDCl3) of LG20.



Figure S10. MALDI-TOF of LG20.



Figure S11. <sup>1</sup>H NMR spectrum (500 MHz, CDCl3) of LG21.



Figure S12. MALDI-TOF of LG21.



Figure S13. UV-visible absorption spectra of LG19, LG20 and LG21 in THF solvent.



**Figure S14.** Theoretical absorption spectra of *LG19*, *LG21* Dyes by using *B3LYP* method *PCM* model in tetrahydrofuran solvent with M06-2X function.



Figure S15. Fluorescence spectra of LG19, LG20 and LG21 in THF solution.



Figure S16. Singlet excited-state lifetimes of LG19, LG20 and LG21 in THF solution.



Figure S17. Reduction spectra of dyes LG19, LG20 and LG21 in THF.



Figure S18. Ionization potential (IP) of LG19 anchored to TiO<sub>2</sub> film



**Figure S19.** Ionization potential (IP) of LG20 anchored to  $TiO_2$  film



Figure S20. Ionization potential (IP) of LG21 anchored to TiO<sub>2</sub> film



LG21 (-5336533)





*Figure S21.* Oxidative OTTLE studies of *LG19* and *LG21* sensitizers in 0.3M TBAP/THF with an applied potential of +0.90V (vs. SCE/KCl).



*Figure S23. Photocurrent action spectra of LG19 and LG21 using different concentrations of TBP.* 



*Figure S24. Current–voltage characteristics of LG19 and LG21 using different concentrations of TBP.* 



Figure S25. Current–voltage characteristics of LG20 based devices using 0.1M TBP.



*Figure S26.* TG/DTG curves of *LG19*, *LG21* porphyrins with heating rate 10 °C.min<sup>-1</sup> under nitrogen using 10 mg of sample.

**Table S1**: Optimized energies, HOMO-LUMO energies and ground state dipolemoment by DFT studies by using B3LYP/6-31G (d, p) in vacuum.

| Dye  | <i>ªE</i> ,<br>K.cal./mol | <sup>b</sup> HOMO (H), | <sup>b</sup> LUMO (L) | <sup>▶</sup> H-L gap | ۳      |
|------|---------------------------|------------------------|-----------------------|----------------------|--------|
| LG19 | -4479011                  | -4.735                 | -2.805                | 1.93                 | 7.8143 |
| LG20 | -5135251                  | -4.709                 | -3.079                | 1.63                 | 8.3739 |
| LG21 | -5336533                  | -4.687                 | -2.923                | 1.76                 | 7.8459 |

<sup>a</sup>Total minimum energy of LG19-LG21, <sup>b</sup>values in eV, <sup>c</sup>values in Debye units.

**Table S2**: Singlet excited state properties of dyes by B3LYP method and M06-2X function in tetrahydrofuran solvent in PCM model.

| Dye  | <sup>a</sup> $\lambda_{max}$ | ${}^{b}\!f$ | °E (eV) | % of Molecular Orbital Contribution                                                                              |
|------|------------------------------|-------------|---------|------------------------------------------------------------------------------------------------------------------|
| LG19 | 454                          | 0.195       | 2.727   | H-3->LUMO (38%), H-2->LUMO (17%), HOMO->L+1 (19%)<br>H-3->L+1 (4%), H-3->L+3 (2%), H-1->L+2 (5%), HOMO->L+3 (5%) |
|      | 565                          | 0.024       | 2.192   | H-1->LUMO (57%), HOMO->L+2 (31%) H-1->L+1 (6%)                                                                   |
|      | 641                          | 1.527       | 1.933   | HOMO->LUMO (81%) H-2->LUMO (2%), H-1->L+2 (8%),<br>HOMO->L+1 (4%)                                                |
| LG20 | 468                          | 0.595       | 2.727   | H-3->LUMO (25%), H-3->L+1 (14%), H-2->LUMO (12%), H-1->L+2 (23%), H-2->L+1 (6%), HOMO->LUMO (6%), HOMO->L+4 (7%) |
|      | 567                          | 0.022       | 2.185   | H-1->LUMO (44%), H-1->L+1 (20%), HOMO->L+2 (31%)                                                                 |
|      | 665                          | 1.987       | 1.861   | HOMO->LUMO (74%), HOMO->L+1 (11%)H-4->L+1 (2%), H-3-                                                             |
|      |                              |             |         | >LUMO (3%), H-2->LUMO (2%), H-1->L+2 (5%)                                                                        |
| LG21 | 470                          | 0.667       | 2.634   | HOMO->LUMO (74%), HOMO->L+1 (11%)H-4->L+1 (2%), H-3-<br>>LUMO (3%), H-2->LUMO (2%), H-1->L+2 (5%)                |
|      | 562                          | 0.017       | 2.203   | H-1->LUMO (48%), H-1->L+1 (12%), HOMO->L+2 (34%)                                                                 |
|      | 643                          | 1.624       | 1.944   | HOMO->LUMO (75%), H-1->L+2 (8%), HOMO->L+1 (9%)                                                                  |

<sup>a</sup>Theoretical absorbance in nm, <sup>b</sup>Oscillator strength, and <sup>c</sup>Excited state energy in eV.

Table S3: LG20 Devices data

| Dye | LG20            | LG20     | LG20     | LG20     | LG20     |
|-----|-----------------|----------|----------|----------|----------|
|     | <b>TBP0.1-1</b> | TBP0.1-2 | TBP0.1-3 | TBP0.1-4 | TBP0.1-5 |

| J <sub>sc</sub> [mA/cm <sup>2</sup> ] | 21.50 | 21.04 | 21.20 | 21.16 | 21.35 |
|---------------------------------------|-------|-------|-------|-------|-------|
| $V_{ m oc}[{ m V}]$                   | 0.666 | 0.668 | 0.664 | 0.665 | 0.656 |
| FF                                    | 0.698 | 0.708 | 0.693 | 0.698 | 0.709 |
| η[%]                                  | 10.00 | 9.95  | 9.76  | 9.83  | 9.93  |