Electronic Supporting Information

Uncovering the microscopic mechanism of incorporating Mn²⁺

ions into CsPbCl₃ crystal lattice

Jienan Xia,^{a,†} Song Lu,^{b,†} Lei Lei,^{a*} Youjie Hua,^a Shiqing Xu^{a*}

^aInstitute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P R. China

^bDepartment of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic

[†] These authors contributed equally to this work.

Characterizations. The crystal structures were tested by X-ray diffraction (XRD), using a powder diffractometer (Bruker D8 Advance), with a radiation of Cu-K α (λ = 1.5405 Å). The morphology of the products was characterized by scanning transmission electron microscopy (STEM) using a field emission transmission electron microscope (TEM, FEI Tecnai G² F20). All the samples were prepared through diluting the nanocrystals in cyclohexane, then dropping it onto a copper grid coated with carbon film and evaporating the solvent afterwards. X-ray photoelectron spectroscopy (XPS) analysis was carried out using a 250Xi ESCA system under Al Kα irradiation. All the binding energies were calibrated to the C 1s peak of the surface adventitious carbon at 284.6 eV. The actual chemical compositions were measured via the inductively coupled plasma (ICP) technique with a PerkinElmer Optima 3300DV spectrometer. Optical absorption (Abs.) spectra were measured by using a UV-VIS-NIR spectrophotometer (Shimadzu UV3600). Photoluminescence (PL), photoluminescence excitation (PLE), photoluminescence quantum yield (PLQY) and Mn²⁺ decay curves for the Mn-doped CsPbCl₃ NCs were performed by an Edinburgh Instruments FLS920 spectrophotometer using Xenon lamps as the excitation source. The temperature dependent photoluminescence properties were recorded by the above spectrometer equipped with a TAP-02 temperature controller (ORIENT KOJI, China).

Computation method (Part **I**).

Considering the chemical potentials of constitute elements could make a big difference to the defect formation energies^[1], we calculated the stability region of different products against Pb and Cl chemical potential. First, the chemical potentials of Cs, Pb and Cl atoms should be less than 0 eV, so as to avoid the formation of those elementary substances during the synthetic process. Besides, equilibrium growth of a stable CsPbCl₃ also required the chemical potentials satisfy that^[2]

$$\mu(Cs) + \mu(Pb) + \mu(Cl) = \Delta E(CsPbCl_3) = -17.625 \text{ eV}$$

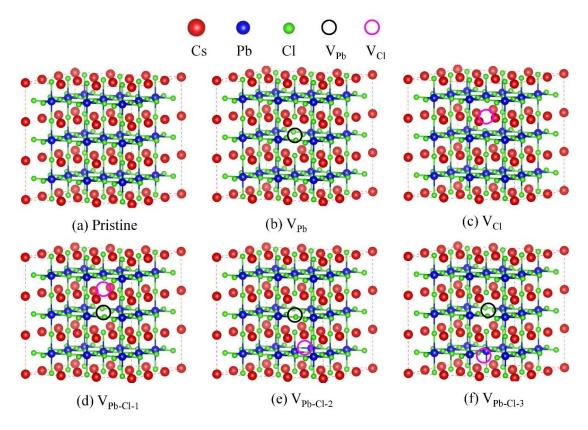
where $\Delta E(\text{CsPbCl}_3)$ was the total energy of the pristine CsPbCl₃ single cell. Finally, in order to avoid the formation of secondary products such as CsCl and PbCl₂, we set up the following restrictions,

$$\mu(Cs) + \mu(Cl) < \Delta E (CsCl) = -6.101 \text{ eV}$$

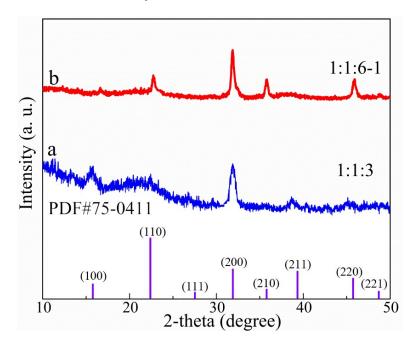
 $\mu(Pb) + 2\mu(Cl) < \Delta E (PbCl_2) = -10.705 \text{ eV}$

where $\Delta E(CsCl)$ and $\Delta E(PbCl_2)$ were the total energies of the CsCl and PbCl₂ single cells, respectively. Under all the above limitations, the available equilibrium chemical potential region for CsPbCl₃ was achieved (Figure 4a).

In this work, we considered several point defects (V_{Pb} , V_{Cl} , V_{Pb-Cl} and V_{Pb-2Cl}) in the pristine CsPbCl₃. The $V_{Pb-Cl-1}$, $V_{Pb-Cl-2}$ and $V_{Pb-Cl-3}$ were three differnt V_{Pb-Cl} double vancaies (Figure S1, ESI), where $V_{Pb-Cl-1}$ represented bond [Pb---Cl] vacancy pair, $V_{Pb-Cl-2}$ represented a Pb²⁺ vacancy together with a non-connective but closer Clvancany and $V_{Pb-Cl-3}$ represented a Pb²⁺ vacancy together with a non-connective and farther distance Cl- vancany. Two characteristic points A and B shown in Figure 4a which represented different growth environment were chosen to calculate the formation energies of kinds of defective crystals. Furthermore, the total charge density of (0 0 1) surface of pristine and Mn-doped CsPbCl₃ were calculated to reveal the size evolution mechanism.


Table S1. The formation energies of diverse defects in CsPbCl₃ at Points A and B (Figure 4a) with unit eV. V_{Pb} and V_{Cl} represented single Pb²⁺ or Cl⁻ vacancy, $V_{Pb-Cl-1}$, $V_{Pb-Cl-2}$ and $V_{Pb-Cl-3}$ were three types of double vacancies, which were illustrated in Figure S1. D_{Mn-Cl} and D_{Mn} were the respectively introducing of the [Mn---Cl] ion pair and Mn^{2+} into the Pb²⁺-vacancy involved defective crystal structure with the lowerst FE. Sub_{Mn} represented the substitution energy of repalcing Pb²⁺ ions by Mn²⁺ ions in a perfect crystal structure.

	V _{Cl}	V_{Pb}	V _{Pb-Cl-1}	$V_{Pb-Cl-2}$	$V_{Pb-Cl-3}$	D _{Mn-Cl}	D_{Mn}	$\operatorname{Sub}_{\operatorname{Mn}}$
Cl-rich	3.618	1.451	1.364	2.130	2.254	-1.151	2.334eV	0.213
Cl-poor	0.918	5.913	3.126	3.892	4.016	1.549	2.354eV	4.675


Table S2. Mn²⁺ doping contents determined from inductively coupled plasma atomic emission spectroscopy (ICP-AES).

Cs:	Pb:	Cl:	Mn	Mn ²⁺	doping	content	
precu	ursors i	atio		from ICP-AES (mol%)			
	1:1:	3-1		2.51			
	1:1:4	.5-1		5.65			
	1:1:	6-1		8.12			

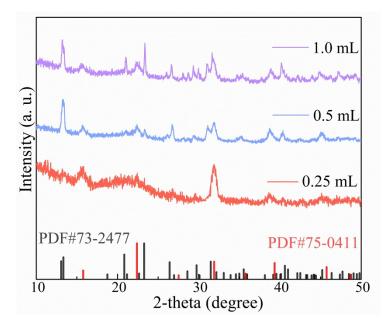

Figure S1-S9

Figure S1. Crystal structure of (a) pristine, (b) Pb^{2+} vacancy V_{Pb} , (c) Cl^{-} vacancy V_{Cl} , (d) Pb^{2+} vacancy bond with Cl^{-} vacancy $V_{Pb-Cl-1}$, (e) Pb^{2+} vacancy together with nonconnective but closer Cl^{-} vacancy $V_{Pb-Cl-2}$, (f) Pb^{2+} vacancy together with nonconnective but farther Cl^{-} vacancy $V_{Pb-Cl-3}$.

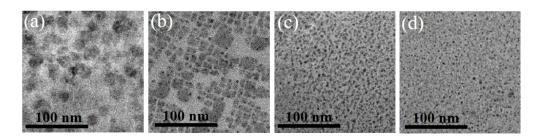
Figure S2. XRD patterns of the as-prepared CsPbCl₃ nanocrystals at a stoichiometry precursors content and Mn²⁺ doped CsPbCl₃ QDs at excesscive Cl⁻ content.

Figure S3. XRD patterns of the CsPbCl₃ nanocrystals prepared with different acetone content.

Acetone could promote the ionization of the precursors including CsOOR (cerium oleate complex) and Pb(OOR)₂ (lead oleate complex), and then nucleation of CsPbCl₃. Equations of the ionization equilibrium of the precursors and the subsequent nucleation processes were given as below:

$$CsOOR \leftrightarrow Cs^+ + ROO^- \tag{1}$$

$$Pb(OOR)_2 \leftrightarrow Pb^{2+} + 2ROO^{-} \tag{2}$$


$$RNH_3Cl \leftrightarrow RNH_3^+ + Cl^- \tag{3}$$

$$Cs^{+} + Pb^{2+} + 3Cl^{-} \leftrightarrow CsPbCl_{3}$$

$$\tag{4}$$

$$4Cs^{+} + Pb^{2+} + 6Cl^{-} \leftrightarrow Cs_{4}PbCl_{6}$$
 (5)

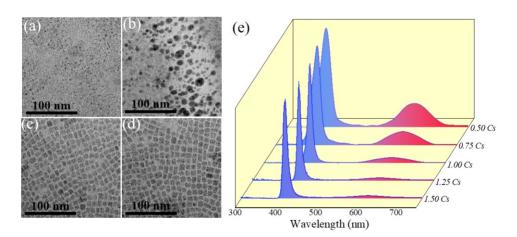

As a result, only CsPbCl₃ phase was formed below a critical Cs⁺, Pb²⁺ and Cl⁻ concentration. With the increase of acetone, the greatly enhanced ionization rate resulted a high concentration of Cs⁺, Pb²⁺ and Cl⁻ ions in the reaction solution, which then led to the formation of Cs₄PbCl₆ phase accompany with CsPbCl₃ phase.

Figure S4. TEM images of the CsPbCl₃: Mn nanocrystals under the condition of different Cl⁻ contents: (a) 1.5 mM, (b) 3 mM, (c) 4.5 mM and (d) 6 mM.

Figure S5. PL spectra of the Mn²⁺ doped CsPbCl₃ perovskites under the condition of different Cl⁻ content.

Figure S6. TEM images of the CsPbCl₃: Mn nanocrystals under the condition of different Cs⁺ contents: (a) 0.50 mM, (b) 0.75 mM, (c) 1.25 mM and (d) 1.5 mM. (e) PL spectra at different Cs⁺ contents.

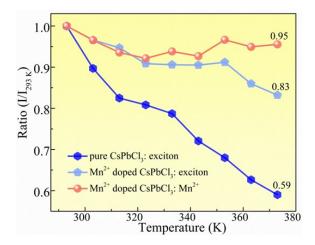
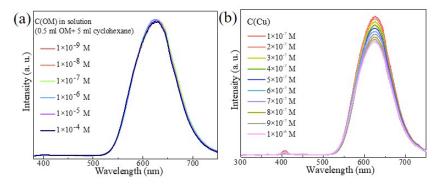



Figure S7. Temperature dependent integral emission intensities of pure CsPbCl₃, Mn^{2+} and exciton in the Mn^{2+} doped CsPbCl₃ QDs.

Figure S8. (a) PL spectra of the CsPbCl₃: Mn suspensions at different OM concentration. (b) PL spectra of the CsPbCl₃ suspensions versus Cu^{2+} concentration ranging from 1×10^{-7} M to 1×10^{-6} M.

The relationship between I/I_0 and concentration of Cu^{2+} ion could be fitted well by the following equation:

$$I/I_0 = A + K[C] \tag{1}$$

Where I and I_0 were the PL intensities with and without Cu^{2+} ions, respectively. A was the fitted intercept, K was the slope (sensitivity), and [C] represented the concentration of Cu^{2+} ions. As shown in Figure 5d, the relationship was linearly fitted well with R²=0.999. Thus, the limit of detection (LOD) was calculated, basing on the equation of

$$LOD=3\sigma/K$$
 (2)

Where σ was the standard deviation of the blank.

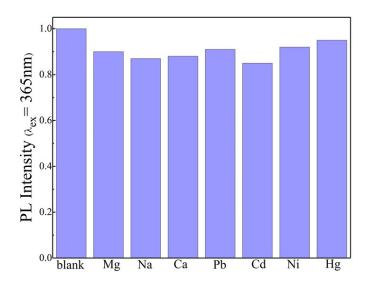


Figure S9. Mn^{2+} PL intensity (I) under different metal ions. The metal ions concentration was 1.0×10^{-3} M.

References

- [1] J. Kang and L. Wang, J. Phys. Chem. Lett., 2017, 8, 489-493.
- [2] Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr and H. T. Sun, *J. Am. Chem. Soc.*, **2018**, 140, 9942-9951.