Supporting Information

Highly durable textile-based sensor as human-worn material interface for long-

term multiple mechanical deformation sensing

Ben Niu,^a Tao Hua *^a, Haibo Hu,^b Bingang Xu,^a Xiao Tian,^a Kahei Chan,^a Shun Chen ^a

^aNanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China. E-mail: tao.hua@polyu.edu.hk ^bSchool of Physics and Materials Science, Anhui University, Hefei, 230000, China

Fig. S1 The tensile stress versus strain curves of the PUY, rGO/PUY, and PDA/rGO/PUY obtained through the testing by using the machine of Instron 5944, with the gauge length of 10 cm and testing speed of 100 mm min⁻¹.

Fig. S2 The response and recovery curves of (a) rGO/PUY, (b) PDA/rGO/PUY, and (c) fabric sensors under a small strain of 5% and a testing speed of 600 mm/min. (d) Comparison of the response and recovery time between the three sensors.

Fig. S3 Electro-mechanical curves of the sensing yarn before and after sweat dipping. (a) 50 cycles. (b) 3 cycles. (For the effect of sweat, the sensing yarn was dipped into an artificial sweat (pH 8.0) for 30 min at room temperature, and then the sensor was cleaned by deionized water and fully dried in the air.)

Fig. S4 Cyclic stability test of compressive bending of the sensing (a) yarn and (b) fabric under the displacement of moving pressure head of 10 mm and the movement speed of pressure head of 100 mm min⁻¹.

Fig. S5 Washability of the sensing fabric. (The sensing fabric was firstly soaked into the detergent solution for 2 min, where the solution contains 0.2 wt.% of 1993 AATCC Standard Reference Detergent. Then the solution was stirred at 27 °C and 200 r.p.m for 5 min to simulate the washing process. Thereafter, the sensing fabric was rinsed by cleaned water and fully dried in the ventilated hood at room temperature.)

Materials	GF@strain	Durability (cycles@strain)		Hysteresis	Weav- ability	Sensing function	Ref
PDA/rGO/PU	50.0@50%	30000@50%	High	Low	High	Tension, Bending induced tension	This work
rGO/(PU/PE)	10@1% 3.7@50%	10000@30/50%	Nonlinear	High	N/A	Tension, bending, torsion	S1
CNTs/PU	1.67@0-20% 1.24@20-100%	2000@50%	Nonlinear	N/A	N/A	Tension	S2
AgNWs/ Polyolefin	13920@64%	4500@10%	Nonlinear	N/A	N/A	Tension	S3
CNTs/PU	5@1500%	10@400%	Nonlinear	N/A	N/A	Tension	S4
(CB/PDMS)- (AgNWs/nylon& PU)	~2.8@20% ~0.7@100%	N/A	Two linear ranges	Low	high	Tension, flexion, pressure	S5
PEDOT/PE	0.76@20%	1000@20%	Nonlinear	N/A	N/A	Tension, pressure	S6

Table. S1 Performance comparisons to recently reported 1D strain sensors

Note:

GF: gauge factor; rGO: reduced graphene oxide; PU: polyurethane; PE: polyester; CNTs: carbon nanotubes; AgNWs: Ag nanowires; CB: carbon black; PDMS: polydimethylsiloxane; GWF: graphene woven fabric; PEDOT: poly(3,4-ethylenedioxythiophene)

Materials	Fabrication method	GF@strain	Durability (cycles@strain)	Linearity	Hysteresis	Effects on textile	Capability for long- term use	Ref
(PDA/rGO/PU) /elastic fabric	Weaving	25.3@50%	10000@50%	High	Low	Little	High	This work
CNT/Spandex	Knitting	0.25@100%	1000@100%	High	Low	Low	N/A	S 7
PPy/nylon lycra fabric	In situ polymerization	~ -3.3@20% ~ -0.7@60%	N/A	Nonlinear	Low	Low	N/A	S 8
PEDOT:PSS/ PU	Wet-spinning knitting	~ -0.7@50% ~ -0.3@200%	500@100%	Nonlinear	N/A	High	N/A	S9
Carbonized silk/Ecoflex	Carbonization	5.8@0-1% 9.6@250% 37.5@250- 500%	6000@100%	Two linear ranges	Low	High	Low	S10
Ag ink/PU	Printing	~13.3@30%	1000@30%	Nonlinear	Differ with different structures	Low	N/A	S11
Pen ink/cupra fabrics	Dip-coating	2.63@23%	5@2-4%	High	Low	Low	N/A	S12
rGO/PE	Dip-coating reduction	-1.7@15% -26@8%	500@7.5/5%	High	Low	High	N/A	S13
GWF/PDMS	CVD	500@2% 10000@8%	1000@2%	Nonlinear	N/A	High	Low	S14
rGO/ (nylon & PU)	Dip-coating reduction	18.5@10% 12.1@10-18%	120@3%	Linear below 10%	Low	Low	N/A	S15

Table. S2 Performance comparisons to related state of the art 2D textile-based strain sensors

Note:

CVD: chemical vapor deposition; PPy: polypyrrole; PSS: poly(styrenesulfonate);

Table. S3 Specifications of the sensing sateen fabric.

Weave repeat	Yarn (N	Yarn count (Ne)		Fabric density (Threads cm ⁻¹)		Fabric cover factor (%)		
	Warp	Weft	Warp	Weft	Warp	Weft	Total	
8×8	80/2	21	32	27	45	50.2	73	

References

- S1 Y. Cheng, R. Wang, J. Sun, L. Gao, Adv. Mater. 2015, 27, 7365-7371.
- S2 Y. Li, B. Zhou, G. Zheng, X. Liu, T. Li, C. Yan, C. Cheng, K. Dai, C. Liu, C. Shen, J. Mater. Chem. C 2018, 6, 2258-2269.
- S3 W. Zhong, C. Liu, C. Xiang, Y. Jin, M. Li, K. Liu, Q. Liu, Y. Wang, G. Sun, D. Wang, ACS Appl. Mater. Interfaces 2017, 9, 42058-42066.
- S4 Q. Fan, Z. Qin, S. Gao, Y. Wu, J. Pionteck, E. Mäder, M. Zhu, Carbon 2012, 50, 4085-4092.
- S5 J. Ge, L. Sun, F. R. Zhang, Y. Zhang, L. A. Shi, H. Y. Zhao, H. W. Zhu, H. L. Jiang, S. H. Yu, *Adv. Mater.* 2016, 28, 722-728.
- S6 J. Eom, R. Jaisutti, H. Lee, W. Lee, J.-S. Heo, J.-Y. Lee, S. K. Park, Y.-H. Kim, ACS Appl. Mater. Interfaces 2017, 9, 10190-10197.
- S7 J. Foroughi, G. M. Spinks, S. Aziz, A. Mirabedini, A. Jeiranikhameneh, G. G. Wallace, M. E. Kozlov, R. H. Baughman, ACS nano 2016, 10, 9129-9135.
- S8 J. Wu, D. Zhou, C. O. Too, G. G. Wallace, Synth. Met. 2005, 155, 698-701.
- S9 S. Seyedin, S. Moradi, C. Singh, J. M. Razal, Appl. Mater. Today 2018, 11, 255-263.
- S10 C. Wang, X. Li, E. Gao, M. Jian, K. Xia, Q. Wang, Z. Xu, T. Ren, Y. Zhang, Adv. Mater. 2016, 28, 6640-6648.
- S11 T. G. La, S. Qiu, D. K. Scott, R. Bakhtiari, J. W. Kuziek, K. E. Mathewson, J. Rieger, H. J. Chung, Adv. Healthc. Mater. 2018, 7, 1801033.
- S12 S. Bi, L. Hou, H. Zhao, L. Zhu, Y. Lu, J. Mater. Chem. A 2018, 6, 16556-16565.
- S13 Z. Yang, Y. Pang, X.-I. Han, Y. Yang, J. Ling, M. Jian, Y. Zhang, Y. Yang, T.-L. Ren, ACS nano 2018, 12, 9134-9141.
- S14 T. Yang, W. Wang, H. Zhang, X. Li, J. Shi, Y. He, Q.-s. Zheng, Z. Li, H. Zhu, ACS nano 2015, 9, 10867-10875.
- S15 G. Cai, M. Yang, Z. Xu, J. Liu, B. Tang, X. Wang, Chem. Eng. J. 2017, 325, 396-403.