Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Theoretical investigation on promising acceptor groups for POM-based dye:

From electronic structure to photovoltaic conversion efficiency

Yu Gao, Wei Guan, Li-Kai Yan*, and Zhong-Min Su

Institute of Functional Material Chemistry, National & Local United Engineering Lab

for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of

Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.

R. China, Fax: +86-431-5684009.

*Corresponding author, E-mail address: yanlk924@nenu.edu.cn.

1.1 Average dye electrostatic potential ($V_{\rm EL}$)

The average dye electrostatic potential on TiO2 surface was evaluated as following [1]:

$$V_{\rm EL} = \frac{1}{n_{Ti}} \sum_{i=1}^{n_{\rm Ti}} \sum_{j=1}^{n_{\rm q}} \frac{q_{\rm j}}{r_{\rm ij}}$$
(1)

where q_j is the j_{th} of the n_q dye point charge calculated by Merz-Kollman method [2,3] to obtain the atomic charge distributions. And r_{ij} represents the distances between these of charges and each of the titanium atoms in the superficial layer of TiO₂ cluster. 1.2 Details about dissociative (D) and molecular (M) adsorption modes

The dissociative adsorption modes 3/4-D1 to 3/4-D4 and 3/4-D5 to 3/4-D8 are in different adsorption directions. For 3/4-D1, 3/4-D2, 3/4-D5 and 3/4-D6 configurations, the O/O atoms coordinate with Ti_{5c} atoms and hydrogen bonds are also presented in 3/4-D2 and 3/4-D6. The O/N atoms in 3/4-D3 and 3/4-D4 modes coordinate with Ti atoms, and the configurations of 3/4-D7 and 3/4-D8 are similar to 3/4-D3 and 3/4-D4, with different adsorption directions. Moreover, configurations 3/4-M1 and 3/4-M2 are the corresponding molecular adsorption modes to 3/4-D1 and 3/4-D5.

References

[1] Ronca, E., Pastore, M., Belpassi, L., Tarantelli, F., Angelis, F. D. Influence of the dye molecular structure on the TiO₂ conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects. *Energy Environ. Sci.* **2013**, *6*, 183–193.

[2] Singh, U. C., Kollman, P. A. An approach to computing electrostatic charges for molecules. *J. Comput. Chem.* **1984**, *5*, 129–145.

[3] Besler, B. H., Merz, K. M., Kollman, P. A. Atomic charges derived from semiempirical methods. *J. Comput. Chem.* **1990**, *11*, 431–439.

Figure S1. The experimental and theoretical absorption spectra of $[Mo_6O_{18}(N-1-C_{10}H_6-2-CH_3)]^{2-}$.

Figure S2. Optimized most stable dimer structures as well as the interaction energies ΔE_{tot} for studied dyes.

Figure S3. Possible adsorption configurations for dyes 3 and 4 on TiO_2 surface.

Figure S4. Optimized geometrical structures with adsorption energies (E_{ads}) and specific interatomic distances for dyes **3** and **4** on TiO₂ surface.

$[Mo_6O_{18}(N-1-C_{10}H_6-2-CH_3)]^{2-}$	λ_{\max} (nm)	f
PBE0	255	0.13
	436	0.38

 Table S1. The theoretical absorption spectra data of $[Mo_6O_{18}(N-1-C_{10}H_6-2-CH_3)]^{2-}$.

Table S2. The calculated excitation energies E_v (eV), maximum absorption wavelengths λ_{max} (nm), oscillator strengths f and major electronic compositions for dimers of dyes **1–4**.

dye	$E_{\rm v}$	λ_{\max}	f	Major electronic compositions
1-dimer	2.43	511	1.96	$H-3 \rightarrow L(44\%) H-1 \rightarrow L+3(32\%)$
	2.97	418	0.22	H−1→L+12(30%) H−1→L+15(36%)
2-dimer	2.62	474	2.18	$H - 1 \rightarrow L + 2(12\%) H \rightarrow L + 3(62\%)$
	2.95	421	0.20	H−3→L+8(57%) H−3→L+9(12%)
3-dimer	2.32	534	4.82	$H-1 \rightarrow L+2(51\%) H \rightarrow L+3(40\%)$
	3.05	407	0.18	H−2→L+15(39%) H−2→L+17(21%)
4-dimer	2.26	549	2.93	$H-1 \rightarrow L+2(22\%) H \rightarrow L+3(28\%)$
	2.67	465	0.20	H→L+13(47%) H→L+15(31%)