Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Single-component solid state white-light emission and photoluminescent color

tuning of a Cd(II) complex and its application as luminescent thermometer

Jinling Miao,* Yong Nie,* Yexin Li, Chengyuan Qin, Yifan Ren, Chunyue Xu, Meijing Yan, Kexin Liu, Guangning Liu

School of Chemistry and Chemical Engineering, Institute for Smart Material & Engineering, University of Jinan, 250022 Jinan, Shandong, P. R. China

E-mail: chm_miaojl@ujn.edu.cn, chm_niey@ujn.edu.cn

Contents

- Table S1. Crystal data and refinement details of 1 and 3.
- Table S2. Selected bond lengths and angles of **1**.
- Table S3. Selected bond lengths of **3**.
- Fig. S1. PXRD patterns of 1.
- Table S4. Photophysical data of crystals of **1**.
- Fig. S2. Fluorescence lifetime profiles of crystals of **1**.
- Fig. S3. Excitation spectra of crystals of 1.
- Fig. S4. Emission spectrum of 2.
- Fig. S5. Emission spectrum of PyNH₂.
- Fig. S6. Crystal structure of **3**.
- Fig. S7. Emission spectrum of **3**.
- Fig. S8. Pictures of 1 before (left) and after (right) grinding under ambient light.
- Fig. S9. ¹H-NMR spectrum of crystalline 1 in DMSO- d_6 .
- Fig. S10. ¹H-NMR spectrum of **1** (after being ground for 20 min) in DMSO-*d*₆.
- Fig. S11. FT-IR spectra of 1, a) crystals, b) amorphous sample, c) amorphous sample at 180 °C.

- Fig. S12. Solid state absorption spectra of 1, 2 and 3.
- Fig. S13. Solid state absorption spectra of amorphous 1 at different temperatures.
- Fig. S14. Fluorescence lifetime profiles of amorphous 1.
- Fig. S15. Excitation spectra of amorphous 1.
- Fig. S16. Photos of amorphous 1 under ambient light at different temperatures.
- Fig. S17. TGA curve of amorphous 1.
- Fig. S18. ¹H-NMR spectrum of **1** (after being heated to 180° C) in DMSO-*d*₆.
- Fig. S19. Emission spectrum of crystalline 1 and excitation spectra of amorphous 1 at different temperatures.

Crystal data	1	3
Empirical formula	$C_{19}H_{16}CdN_2O_4$	$C_{42}H_{30}Cd_{3}O_{12}$
Formula weight (g ·mol ⁻¹)	448.74	1063.86
Temperature (K)	293.15	293(2)
Wavelength (Å)	0.71073	0.71073
Crystal system	monoclinic	triclinic
Space group	P2 ₁ /n	P-1
<i>a</i> (Å)	12.5936(5)	8.9832(2)
<i>b</i> (Å)	8.8231(3)	10.0012(4)
<i>c</i> (Å)	16.1379(6)	11.0442(4)
α(°)	90.00	76.698(3)
β (°)	99.837(4)	81.519(2)
γ(°)	90.00	78.513(3)

Table S1. Crystal data and refinement details of 1 and 3.

Volume (Å ³)	1766.78(12)	940.89(6)
Ζ	4	1
$\rho_{\rm calc} ({\rm Mg}{\cdot}{\rm m}^{-3})$	1.687	1.878
μ (mm ⁻¹)	1.263	1.746
<i>F</i> (000)	896.0	522.0
Crystal size (mm)	$0.38 \times 0.36 \times 0.18$	$0.1 \times 0.08 \times 0.06$
2θ range for data collection (°)	5.98 to 52.72	6.08 to 52.744
	$-15 \le h \le 15$	$-11 \le h \le 11$
Limiting indices	$-10 \le k \le 11$	$-12 \le k \le 12$
	$-19 \le l \le 20$	$-13 \le l \le 13$
Reflections collected/	11203/3594	22321/3850
Independent [<i>R</i> _{int}]	$[R_{int} = 0.0313]$	$[R_{int} = 0.0325]$
Data / restraints / parameters	3594/0/188	3850/0/259
Goodness-of-fit on F ²	1.037	1.053
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0493,$	$R_1 = 0.0221,$
	$wR_2 = 0.1137$	$wR_2 = 0.0468$
R indices (all data)	$R_1 = 0.0632,$	$R_1 = 0.0297,$
it malees (un data)	$wR_2 = 0.1242$	$wR_2 = 0.0500$
Largest diff. peak and hole (Å ⁻³)	2.00/-1.13	0.84/-0.42
CCDC number	1909941	1909939

	Bond lengths (Å)	bond angles (°)	
Cd1-O4 ⁱ	2.307(3)	O4-Cd1-O4 ⁱ	78.4(1)
Cd1-O4	2.273(3)	O4-Cd1-O3	79.6(1)
Cd1-O2	2.228(3)	O4 ⁱ -Cd1-O3	157.9(1)
Cd1-O3	2.359(3)	O4-Cd1-N1	98.4(1)
Cd1-N1	2.279(4)	O4 ⁱ -Cd1-O1	93.9(1)
Cd1-O1	2.324(4)	04-Cd1-O1	90.1(1)
		O2-Cd1-O4	165.9(1)
		O2-Cd1-O4 ⁱ	112.3(1)
		O2-Cd1-O3	89.4(1)
		O2-Cd1-N1	90.5(1)
		O2-Cd1-O1	80.2(1)
		N1-Cd1-O4 ⁱ	92.9(1)
		N1-Cd1-O3	90.6(1)
		N1-Cd1-O1	170.1(1)
		O1-Cd1-O3	85.8(1)

ⁱsymmetry code:1-x, 1-y, -z

Table S3. Selected bond lengths of **3**.

	Bond lengths (Å)	Bond lengths (Å)	
Cd1-O2	2.229(2)	Cd2-O5	2.250(2)
Cd1-O3	2.310(2)	Cd2-O3	2.310(2)
Cd1-O1	2.310(2)	Cd2-O6 ¹	2.285(2)
Cd2-O2	2.281(2)	Cd2-O4	2.300(2)
Cd2-O5 ⁱ	2.285(2)		

ⁱsymmetry code: 1-x,1-y,1-y

Fig. S1. PXRD patterns of 1, a) simulated from single crystal data, b) as-synthesized, c) ground for 5 min, d) ground for 20 min, and e) heated at 180 °C (after grinding) for 20 min.

$\lambda_{\rm ex} ({\rm nm})$	CIE1931 chromaticity	Color temperature (K)	Quantum yield
	coordinate		
300	0.3327, 0.3284	5472	0.13
350	0.3305, 0.3404	5579	0.17
370	0.3291, 0.3302	5648	0.15
400	0.3269, 0.3377	5753	0.15

Table S4. Photophysical data of crystals of 1.

Fig. S2. Fluorescence lifetime profiles of crystals of **1** (upper: $\lambda_{ex} = 370 \text{ nm}$, $\lambda_{em} = 457 \text{ nm}$; bottom: $\lambda_{ex} = 370 \text{ nm}$, $\lambda_{em} = 570 \text{ nm}$).

Fig. S3. Excitation spectra of crystals of 1.

Fig. S4. Emission spectrum of 2 ($\lambda_{ex} = 370$ nm).

Fig. S5. Emission spectrum of $PyNH_2$ ($\lambda_{ex} = 260$ nm).

Fig. S6. Crystal structure of **3**.

Fig. S7. Emission spectrum of **3** ($\lambda_{ex} = 400$ nm).

Fig. S8. Pictures of 1 before (left) and after (right) grinding under ambient light.

Fig. S9. ¹H-NMR spectrum of crystalline **1** in DMSO- d_6 . δ 9.50 (s, 1H), 7.97 (d, J = 5.8 Hz, 1H), 7.27 (dd, J = 7.9, 1.9 Hz, 1H), 7.18 (ddd, J = 8.7, 6.8, 1.9 Hz, 1H), 6.64-6.41(m, 2H), 6.39-6.25 (m, 2H).

Fig. S10. ¹H-NMR spectrum of **1** (after being ground for 20 min) in DMSO- d_6 . δ 9.50 (s, 1H), 7.97 (d, J = 5.7 Hz, 1H), 7.27 (dd, J = 7.9, 1.7 Hz, 1H), 7.21-7.12 (m, 1H), 6.64-6.40 (m, 2H), 6.39-6.29 (m, 2H).

Fig. S11. FT-IR spectra of 1, a) crystals, b) amorphous, c) amorphous sample heated at 180 °C.

Fig. S12. Solid state absorption spectra of **1** (red line), **2** (black dotted line) and **3** (blue dashed line). Inset: the enlarged region around 370 nm of **2**.

Fig. S13. Solid state absorption spectra of amorphous 1 after being heated at different temperatures.

Fig. S14. Fluorescence lifetime profiles of amorphous 1 (upper: $\lambda_{ex} = 370 \text{ nm}$, $\lambda_{em} = 457 \text{ nm}$; bottom: $\lambda_{ex} = 370 \text{ nm}$, $\lambda_{em} = 515 \text{ nm}$).

Fig. S15. Excitation spectra of amorphous 1.

Fig. S16. Photos of amorphous 1 at different temperatures under ambient light.

Fig. S17. TGA curve of amorphous 1.

Fig. S18. ¹H-NMR spectrum of **1** (after being heated to 180 °C) in DMSO-*d*₆. δ 9.49 (s, 1H), 7.97 (d, *J* = 5.8 Hz, 1H), 7.27 (dd, *J* = 7.9, 1.9 Hz, 1H), 7.18 (ddd, *J* = 8.7, 6.8, 1.9 Hz, 1H), 6.63-6.41 (m, 2H), 6.39-6.29 (m, 2H).

Fig. S19. Emission spectrum of crystalline 1 (red dotted line), and excitation spectra of amorphous 1 (solid lines) at different temperatures.