Electronic Supplementary Information

Intrinsic white-light-emitting hyperbranched polyimide: synthesis, structure-

property and its application as "turn-off" sensor for iron(III) ions

An Xing^{1,2}, Xuepei Miao^{1,†}, Tuan Liu^{1,‡}, Haoran Yang¹, Yan Meng^{1,*}, Xiaoyu Li^{2,*}

¹Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, P. R. China

²State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China

Correspondence to: Y. Meng (Email: <u>mengyan@mail.buct.edu.cn</u>; Fax: +86-10-64452129; Tel: +86-10-64419631); X. Li (E-mail: <u>lixy@mail.buct.edu.cn</u>; Tel: +86-10-64423162).

[†] Current address: Changzhou Institute of Technology

[‡] Current address: School of Mechanical and Materials Engineering, Composite Materials and Engineering Center, Washington State University, Pullman, Washington 99164, USA

Table of Contents

Page number

Synthesis of linear semialiphatic polyimides (LBPA)	S3
Figure S1. FTIR spectra of A ₂ monomers	S4
Figure S2. ¹ H NMR spectra of A ₂ monomers	S4
Figure S3. ¹ H NMR spectra and assignments of the	S5
dendritic, terminal and linear units of HBPIs	
Figure S4. ¹ H NMR spectra and assignments of the	S6
dendritic, terminal and linear units of EHBPIs	
Figure S5. ¹ H NMR spectra of LBPA	S7
Figure S6. FTIR spectra of HBPIs, EHBPIs, and LBPA	S7-S8
Figure S7. UV/Vis absorption spectra of HBPIs, EHBPIs and	S 8
model compounds	
Scheme S1. Structures of model compound-OH and model compound-EP	S9
Scheme S2. Structures of model compounds for TD-DFT calculations	S9
Figure S8. Calculated molecular orbitals of MC-1, MC-2,	S10-S11
MC-3, MC-BPA and MC-3-solid	
Figure S9. Fluorescence spectra of solutions of HBPIs,	S11
and EHBPIs excited at their optimal excitation wavelengths	
Figure S10. Fluorescence spectra of solutions of A ₂ -1, A ₂ -2	S12
and polyimides derived from them	
Figure S11. The effects of temperature on the particle diameters	S12
Table S1. TD-DFT calculation results of model compounds	S13-S14
Table S2. Optimal excitation wavelengths of HBPIs and EHBPIs	S14

Synthesis of linear semialiphatic polyimides (LBPA)

2.28 g (10 mmol) bisphenol A, 35 mL toluene and 30 mL dimethylsulfoxide were charged into a 100 mL three-necked flask, which was equipped with a magnetic stirrer, a thermometer, a Dean-Stark trap, a condenser, and a nitrogen inlet. After removal of air by bubbling nitrogen, 1.38 g (10 mmol) K₂CO₃ were added into the flask under stirring. The temperature was then raised and held at 175 °C until complete removal of toluene/water azeotrope. The azeotrope started to remove at 145 °C. After cooling to room temperature, 4.77 g (10 mmol) A₂-3 were added. The temperature was increased and kept at 150 °C for 10 hours. After cooling, the mixtures were slowly poured into 120 mL methanol to precipitate products. The crude products were collected, reprecipitated from THF to ethanol/water (volume ratio 1:1) mixture twice. Finally, it was dried in vacuum at 90 °C. Yield: 58%. IR (KBr): 1772, 1712, 1600, 1389, 1271, 1232, 745 cm⁻¹. ¹H NMR (400 MHz, (methylsulphoxide)-d₆, δ): 1.65 (t, CH₃-), 3.43 (s, OCH₂-), 3.51 (s, OCH₂-), 3.62 (s, NCH₂-), 6.67-7.78 (br, C₆H₄O or C₆H₃O). M_n=6880 g.mol⁻¹, PDI=1.79.

Figure S1. FTIR spectra of A₂ monomers (A₂-1, A₂-2, A₂-3, from top to bottom).

Figure S2. ¹H NMR spectra of A₂ monomers (A₂-1, A₂-2, A₂-3, from top to bottom).

Figure S3. ¹H NMR spectra and assignments of the dendritic, terminal and linear units of (a) HBPI1, (b) HBPI2, and (c) HBPI3.

Figure S4. ¹H NMR spectra and assignments of the dendritic, terminal and linear units of (a) EHBPI1, (b) EHBPI2, and (c) EHBPI3.

Figure S6. FTIR spectra of (a) HBPI1, (b) HBPI2, (c) HBPI3, (d) EHBPI1, (e) EHBPI2, (f) EHBPI3, and (g) LBPA.

Figure S7. UV/Vis absorption spectra of solutions of (a) HBPI1 and EHBPI1, (b) HBPI2 and EHBPI2, (c) HBPI3 and EHBPI3, (d) model compound-OH and model

compound-EP (The structures of model compound-OH and model compound-EP are shown in Scheme S1).

Scheme S1. Structures of model compound-OH and model compound-EP.

Scheme S2. Structures of model compounds for TD-DFT calculations.

Figure S8. Calculated molecular orbitals of MC-1, MC-2, MC-3 and MC-BPA (TD-DFT method at the B3LYP/6-311++G(d,p) scrf=(solvent=N,N-dimethyl-formamide) level), MC-3-solid (TD-DFT method at the B3LYP/6-311++G(d,p) level). HOMO-m and LUMO+m denote the (m+1)th highest occupied orbital and the (m+1)th lowest unoccupied orbital, respectively.

Figure S9. Fluorescence spectra of solutions of (a) HBPIs, and (b) EHBPIs excited at their optimal excitation wavelength respectively.

Figure S10. Fluorescence spectra of solutions of (a) A_2 -1 and polyimides derived from A_2 -1, (b) A_2 -2 and polyimides derived from A_2 -2.

Figure S11. The effects of temperature on the particle diameters of EHBPI3 aggregates in EHBPI3/NMP/H₂O (37.5%) system. The z-average sizes of aggregates were measured by Malvern Zeta-sizer Nano-ZS at different temperatures (15, 25, 50 and 70 °C) and particle size data was averaged over 3 runs.

System	State	Transition Wavelength/nm	Oscillator Strength	Orbitals Assignment of Transition		Contribution
MC-1	1	386.7	0.0020	$HOMO \rightarrow LUMO$	СТ	0.94
	2	383.1	0.0028	HOMO-1 \rightarrow LUMO+2	СТ	0.95
	3	382.3	0.0030	HOMO-2 \rightarrow LUMO+1	СТ	0.95
MC-2	1	344.3	0.0525	$HOMO \rightarrow LUMO$	HLCT	0.28
				HOMO-1 \rightarrow LUMO	HLCT	0.27
				HOMO-3 \rightarrow LUMO	HLCT	0.32
	2	343.4	0.0459	$\rm HOMO \rightarrow \rm LUMO{+}1$	HLCT	0.16
				HOMO-1 \rightarrow LUMO+1	HLCT	0.39
				HOMO-2 \rightarrow LUMO+1	HLCT	0.12
				HOMO-3 \rightarrow LUMO+1	HLCT	0.26
	3	342.4	0.0427	HOMO-1 \rightarrow LUMO+2	HLCT	0.20
				HOMO-2 \rightarrow LUMO+2	HLCT	0.74
MC-3	1	341.8	0.0587	$HOMO \rightarrow LUMO$	СТ	0.03
				$HOMO \rightarrow LUMO+1$	СТ	0.02
				HOMO-1 \rightarrow LUMO+1	HLCT	0.12
				HOMO-2 \rightarrow LUMO	HLCT	0.29
				HOMO-2 \rightarrow LUMO+1	HLCT	0.17
				HOMO-3 \rightarrow LUMO	HLCT	0.17
				HOMO-3 \rightarrow LUMO+1	HLCT	0.11
	2	341.8	0.0583	$\rm HOMO \rightarrow \rm LUMO{+}2$	СТ	0.03
				HOMO-1 \rightarrow LUMO+1	HLCT	0.06
				$\text{HOMO-1} \rightarrow \text{LUMO+2}$	$PMO-1 \rightarrow LUMO+2$ HLCT	
				HOMO-2 \rightarrow LUMO	HLCT	0.09
				$\mathrm{HOMO-2} \rightarrow \mathrm{LUMO+1}$	HLCT	0.08
				$\text{HOMO-2} \rightarrow \text{LUMO+2}$	HLCT	0.02
				HOMO-3 \rightarrow LUMO	HLCT	0.04
				HOMO-3 \rightarrow LUMO+1	HLCT	0.08
				$\text{HOMO-3} \rightarrow \text{LUMO+2}$	HLCT	0.14
	3	341.6	0.0312	$\mathrm{HOMO} \rightarrow \mathrm{LUMO+2}$	СТ	0.02
				$\text{HOMO-1} \rightarrow \text{LUMO+1}$	HLCT	0.10
				$\text{HOMO-1} \rightarrow \text{LUMO+2}$	HLCT	0.24
				HOMO-2 \rightarrow LUMO	HLCT	0.17
				HOMO-2 \rightarrow LUMO+1	HLCT	0.09
				HOMO-3 \rightarrow LUMO	HLCT	0.07
				HOMO-3 \rightarrow LUMO+1	HLCT	0.08
				HOMO-3 \rightarrow LUMO+2	HLCT	0.11

Table S1. Transition wavelengths, oscillator strengths, orbitals, assignments of $S_0 \rightarrow S_i$ transition, and contributions of each transition of model compounds.

System	State	Transition Wavelength/nm	Oscillator Strength	Orbitals Assignment of Transition		Contribution
MC-3-solid	1	334.0	0.0587	$HOMO \rightarrow LUMO$	HLCT	0.35
				HOMO-1 \rightarrow LUMO	HLCT	0.10
				$HOMO-1 \rightarrow LUMO+1$ HLCT		0.05
				HOMO-1 \rightarrow LUMO+2	HLCT	0.25
				HOMO-2 \rightarrow LUMO	HLCT	0.04
				HOMO-2 \rightarrow LUMO+1	HLCT	0.09
				HOMO-3 \rightarrow LUMO	СТ	0.02
	2	333.9	0.0586	$HOMO \rightarrow LUMO+1$	HLCT	0.35
				HOMO-1 \rightarrow LUMO	HLCT	0.05
				HOMO-1 \rightarrow LUMO+1	HLCT	0.09
				HOMO-2 \rightarrow LUMO	HLCT	0.10
				HOMO-2 \rightarrow LUMO+1	HLCT	0.04
				$\text{HOMO-2} \rightarrow \text{LUMO+2}$	HLCT	0.26
				HOMO-3 \rightarrow LUMO+1	CT	0.02
	3	333.4	0.0064	$\rm HOMO \rightarrow \rm LUMO+2$	HLCT	0.35
				$\mathrm{HOMO-1} \rightarrow \mathrm{LUMO}$	HLCT	0.23
				HOMO-1 \rightarrow LUMO+1	HLCT	0.04
				HOMO-2 \rightarrow LUMO	HLCT	0.04
				HOMO-2 \rightarrow LUMO+1	HLCT	0.25
				HOMO-3 \rightarrow LUMO+2	CT	0.02
MC-BPA	1	342.7	0.0858	HOMO-1 \rightarrow LUMO	HLCT	0.90
	2	337.3	0.0630	$\rm HOMO \rightarrow \rm LUMO{+1}$	HLCT	0.02
				HOMO-2 \rightarrow LUMO+1	HLCT	0.89
	3	333.3	0.0007	$HOMO \rightarrow LUMO$	СТ	0.92

Table S2. Optimal excitation wavelengths of HBPIs and EHBPIs.

Hyperbranched Polymers	HBPI1	HBPI2	HBPI3	EHBPI1	EHBPI2	EHBPI3
Optimal Excitation Wavelength (nm)	407	409	396	390	374	378