Degradation of quantum dot light emitting diodes, the case under low driving level

Xulan Xue,^a Jiayi Dong,^b Shuangpeng Wang,^b Hanzhuang Zhang,^a Han Zhang,^{a,*}

Jialong Zhao,^{c*} and Wenyu Ji^{a*}

^aCollege of Physics, Jilin University, Changchun 130012, China.
^bInstitute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau SAR
^cCenter on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China. E-mail: zhaojl@ciomp.ac.cn
E-mail: jiwy@jlu.edu.cn; zhanghan@jlu.edu.cn; zhaojl@ciomp.ac.cn

Figure S1 Evolution of PL intensities as the function of aging time for different devices.

Figure S2 Changes of the current efficiencies (CE) for different devices with the aging time.

Figure S3. Capacitance-frequency properties of four QLED devices driven at 7.5 mA/cm2 for different aging times.

Figure S4. Normalized capacitances of the QLED devices and the ETL-free device with the aging time at applied voltage of 3 V and 1 kHz. The ETL-free device consists of ITO/QDs(~25 nm)/TCTA (65 nm)/MoO₃ (8 nm)/Al (100 nm).