Electronic Supplementary Information

Multifunctional and highly stretchable electronics based on silver

nanowires / wrap yarn composite for wearable strain sensor and heater

Min Zhao, Dawei Li, Jieyu Huang, Di Wang, Mensah Alfred, Qufu Wei^{1*}

Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi,

Jiangsu, 214122, China. E-mail: qfwei@jiangnan.edu.cn

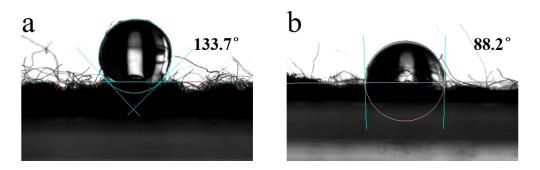


Fig. S1 (a, b) Optical photographs showing the contact angles of water on CPY as-prepared and after O_2 plasma treatment.

Weight (%)	Atomic (%)
26.25	60.09
0.94	1.84
13.33	22.91
59.48	15.16
	26.25 0.94 13.33

Table S1 Relative concentration of elements in AgNWs/CPY.

Table S2 Relative concentration of elements in AgNWs-coated CPY without polydopamine.

Element	Weight (%)	Atomic (%)
СК	66.78	77.83
N K	0.02	0.02
O K	23.94	20.95
Ag L	9.25	1.20

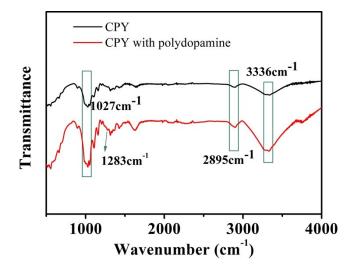


Fig. S2 FTIR spectra of CPY and CPY with polydopamine.

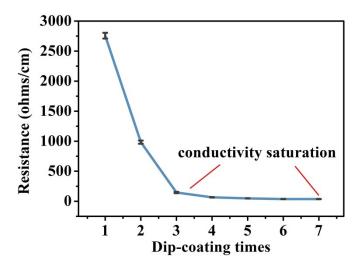


Fig. S3 Electrical resistance change of the CPYs for cycles of dip-coating of AgNWs.

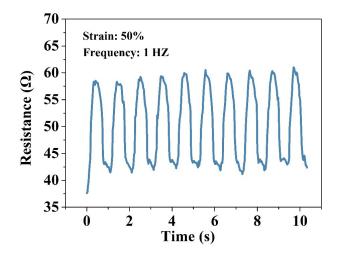


Fig. S4 Resistance change of the strain sensor under the strains of 0%-50% at 1 Hz.

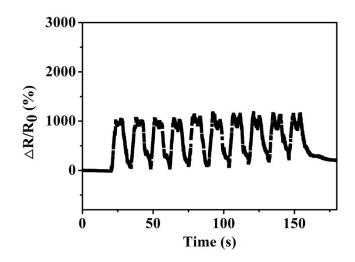


Fig. S5 Relative resistance response under cyclic stretching-releasing with 200% strain.

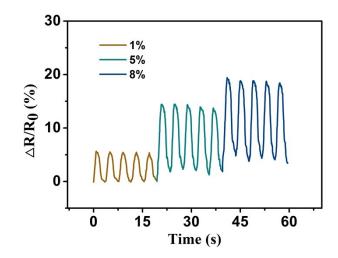


Fig. S6 Relative resistance change under small strains of 1%, 5% and 8%.

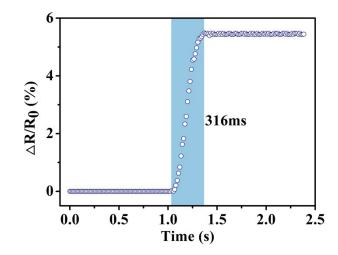


Fig. S7 Response time of the AgNWs/CPY strain sensor at 1% strain.