Supporting Information

Iodine-doped graphite carbon nitride for enhancing photovoltaic device performance via passivation trap states of triple cation perovskite films

Wei Cao, Kaifeng Lin*, Junzhuo Li, Lele Qiu, Yayu Dong, Jiaqi Wang, Debin Xia, Ruiqing Fan, Yulin Yang*

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.

*Corresponding Authors:

E-mail addresses: <u>linkaifeng@hit.edu.cn</u> (K. Lin); <u>ylyang@hit.edu.cn</u> (Y. Yang)

Fig. S1 XPS spectrum of N 1s for g-CNI.

Fig. S2 (a) SEM and (b) TEM images of g-CNI. (c) UV-vis absorption spectra of g-CNI and g-CN. The inset plots are the bandgap of the two samples. (d) PL spectra of g-CN and g-CNI.

Fig. S3. The top-view SEM image of the perovskite with g-CN.

Fig. S4. XRD patterns of perovskite with g-CN and the control

Fig. S5. XPS spectra of I 3d (e) and Pb 4f (f) of perovskite films with g-CN.

Fig. S6. J-V curves of the devices of perovskite with g-CN with different addition amount.

Fig. S7. IPCE and corresponding integrated J_{sc} of the control and perovskite with g-CN devices

Fig. S8. OCVD curves of the control and perovskite with g-CN devices.

Fig. S9. Nyquist plots of the control and perovskite with g-CN devices.

Fig. S10. The equivalent circuits for fitting Nyquist plots

Device type	τ_1 (ns)	A ₁ (%)	τ_2 (ns)	A ₂ (%)	$ au_{avg}$
control	0.67	75.36	5.08	24.64	3.81
with g-CNI	0.70	73.33	6.98	26.67	5.62
with g-CN	0.71	73.53	6.87	26.47	5.49

Table S1. Fitted parameters of TRPL curves for the different perovskite films.

The average carrier PL lifetime (τ_{avg}) is calculated by using the equation of $\tau_{avg} = (A_1 * \tau_1^2 + A_2 * \tau_2^2)/(A_1 * \tau_1 + A_2 * \tau_2)$.

Table S2. The photovoltaic parameters of the perovskite with g-CNI in the different doping ratio.

Device type	J_{sc} (mA/cm ²)	V _{oc} (V)	FF	PCE (%)
control	21.45	1.06	0.70	15.93
0.3	22.05	1.05	0.70	16.29
0.6	22.80	1.07	0.72	17.66
0.9	22.28	1.06	0.71	16.86
1.2	22.02	1.06	0.71	16.59
1.5	21.68	1.06	0.71	16.20

Table S3. The R_s , R_{tr} , R_{rec} of the devices with g-CNI, with g-CN and the control.

Device type	R_S	R _{tr}	R _{rec}
control	16.04	337.3	1459
with g-CN	32.92	331.8	2061
with g-CNI	19.21	322.7	3545