Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

High-performance upconversion luminescent waveguide

using a Rare-earth doped microtube with beveled ends

Shaozuo Huang, Huan Chen, Tao He, Changjian Zhang, Chengyun Zhang, Zhengkun Fu, Zhenglong Zhang,*

Hairong Zheng* School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China E-mail: zlzhang@snnu.edu.cn; hrzheng@snnu.edu.cn

Figure S1. Schematic illustration for the possible formation processes of β -NaYF₄ microcrystals with various morphologies under different experimental conditions.

Supporting Information - 2:

Figure S2. The length (a) and diameter (b) dispersity of rare earth doped microtubes with beveled ends.

Supporting Information - 3:

Figure S3. SEM (a) and energy-dispersive X-ray maps (b) and spectroscopy (c) of single microtube with beveled ends.

Supporting Information - 4:

The near-end excitation is shown in figure S4, and the position scanning video of optical image are shown in supporting video, including experiment (SI-video1) and simulation (SI-video2).

Figure S4. SEM (a) and optical images (b) of single beveled-ends microtube. The excited position in the optical image is marked with a red arrow in (a).

Supporting Information - 5: The calculated method of coupling efficiency

Due to an objective of NA=0.9 is used to collect the optical signals, the maximum collection angles of φ and θ are 360° and 64°, respectively. According the emission angles of beveled end, around two-thirds of the real-emission intensity at beveled end can be collected in the experiment, and around one-thirds of the real emission intensity at the tube wall can be collected in the experiment.

(i) For middle-excitation mode, since only the fluorescence signals transmit along the tube and emit at the beveled ends, the total real-emission intensity of excitation spot C (I_{total}) includes three parts: real-emission at C (I_{Creal}) , real-emission at D (I_{Dreal}) and E (I_{Ereal}) . Therefore, the fluorescence coupling efficiency of middle-excitation mode can be written as,

$$\alpha = \frac{I_{Dreal} + I_{Ereal}}{I_{total}} = \frac{\frac{3}{2}I_D + \frac{3}{2}I_E}{3I_C + \frac{3}{2}I_D + \frac{3}{2}I_E} = \frac{I_D + I_E}{2I_C + I_D + I_E}$$
(1)

For the optimized luminescent waveguide used in Figure 6, $I_E = I_E$. So, the α can be written as,

$$\alpha = \frac{I_D}{I_C + I_D} \tag{2}$$

According the experiment results of emission intensity, the coupling efficiency of $\sim 15\%$ and $\sim 22\%$ can be calculated for red and green fluorescence, respectively.

(ii) For end-excitation mode, since the laser and fluorescence signals simultaneously transmit along the microtube, the observed emission intensity at output end (I_B) includes two parts,

$$I_B = I_{B'} + I_{B''} \tag{3}$$

where I_B is the fluorescence intensity transmitted from input end, and I_B is the fluorescence intensity excited by the transmitted laser. Due to the laser can not only excited fluorescence at spot A, but also transmit along the tube to excite the wall (I_W) and output end, the laser coupling efficiency of end-excitation mode can be written as,

$$\beta = \frac{\frac{3}{2}I_{B''} + 3I_{W}}{\frac{3}{2}I_{B''} + 3I_{W} + \frac{3}{2}I_{A}}$$
(4)

where $I_{B''} = I_B - I_{B'}$, and $I_{B'}$ can be written as,

$$_{B}^{} = \frac{\alpha}{1-\alpha} I_{A} \tag{5}$$

So, the β can be written as,

$$\beta = \frac{(1-\alpha)I_B - \alpha I_A + 2(1-\alpha)I_W}{(1-\alpha)I_B + (1-2\alpha)I_A + 2(1-\alpha)I_W}$$
(6)

According the experiment results of emission intensity, the laser coupling efficiency of

~68% can be calculated for end excitation.