Electronic Supplementary Information

Band Structure Engineering in Sn_{1.03}**Te Through In-induced Resonant Level**

Shantanu Misra¹, Bartlomiej Wiendlocha^{2,†}, Janusz Tobola², Florian Fesquet¹, Anne Dauscher¹, Bertrand Lenoir¹, Christophe Candolfi^{1,*}

¹Institut Jean Lamour, UMR 7198 CNRS – Université de Lorraine, 2 allée André Guinier-Campus ARTEM, BP 50840, 54011 Nancy Cedex, France ² Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Aleja Mickiewicza 30, 30-059 Krakow, Poland

*Corresponding authors: * <u>christophe.candolfi@univ-lorraine.fr</u> ; † <u>wiendlocha@fis.agh.edu.pl</u>

Content

Figure S1. Evolution of the Ioffe-Pisarenko curve calculated by a two-valence-band model upon varying a) the density-of-states effective masses of the light-hole valence band, b) of the heavy-hole valence band, and c) the energy offset between the light and heavy-hole valence bands.

Figure S2. Temperature dependence of the Lorenz number a) for the series $Sn_{1.03-x}In_xTe$ calculated by a single parabolic band model and b) by a two-valence-band model with temperature-dependent band parameters for the x = 0 composition.

Figure S3. Temperature dependence of the lattice thermal conductivity κ_{ph} of the series Sn_{1.03-} _{*x*}In_{*x*}Te determined by using the Lorenz numbers calculated by a single parabolic band model.

Figure S1. Evolution of the Ioffe-Pisarenko curve calculated by a two-valence-band model upon varying a) the density-of-states effective masses of the light-hole valence band m_{lh}^* , b) of the heavy-hole valence band m_{hh}^* , and c) the energy offset ΔE between the light and heavy-hole valence bands. The black arrows mark the evolution of the curve when the corresponding band parameter increases. The values usually admitted for SnTe at 300 K are 0.168^{m_0} , 1.92^{m_0} and 0.30 eV for m_{lh}^* , m_{hh}^* and ΔE , respectively.

Figure S2. Temperature dependence of the Lorenz number L a) for the series $Sn_{1.03-x}In_xTe$ calculated by a single parabolic band (SPB) model and b) by a two-valence-band model with temperature-dependent band (TD-TVB) parameters for the x = 0 composition. Both models give very similar results below 500 K for the x = 0 compound. Above this temperature, L further decreases upon taking into account the temperature dependence of the band parameters.

Figure S3. Temperature dependence of the lattice thermal conductivity κ_{ph} of the series Sn_{1.03-} _{*x*}In_{*x*}Te determined by using the Lorenz numbers calculated by a single parabolic band model.