Supporting Information

Highly stable CdTe quantum dots hosted in gypsum via a flocculation-precipitation method

Yajing Chang, Xiaopeng Cheng, Jinhua Zhang and Dabin Yu*

State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, Anhui, 230037, P. R. China

Corresponding Author

E-mails: dabinyu@sina.cn (D. Yu)

CdTe QDs	QDs size	Absorption	Emission	FWHM	PLQY
	(nm)	peak (nm)	peak (nm)	(nm)	(%)
1	2.5	506	552	56	19
2	2.8	518	569	64	21
3	3.0	532	584	67	24
4	3.3	561	621	70	28

Table S1 Fluorescence characters of CdTe QDs with different sizes.

Fig. S1 True color image of the incorporation and flocculation process of CdTegypsum nanocomposites (a) under daylight and (b) under 365 nm UV lamp.

 Table S2 Fluorescence characters of CdTe-gypsum nanocomposites with different QDs sizes.

CdTe-gypsum	QDs size	Absorption	Emission	FWHM	PLQY
	(nm)	peak (nm)	peak (nm)	(nm)	(%)
1	2.5	507	561	51	15
2	2.8	518	586	53	18
3	3.0	538	610	63	22
4	3.3	567	630	72	27

Fig. S2 XRD pattern of CdTe-gypsum nanocomposites (red curve). As comparison, the standard XRD pattern of gypsum is also provided.

Fig. S3 XRD pattern of the in-situ crystallization process of CdTe-gypsum nanocomposites.

Fig. S4 (a) SEM, (b) TEM, (c) HRTEM and (d) selected area electron diffraction (SEAD) image of CdTe-gypsum nanocomposites.

Fig. S5 FTIR spectra of MPA (blue curve) and CdTe QDs powders (red curve).

Fig. S6 Schematic of MPA capped CdTe QD hosted in gypsum.

Fig. S7 Time-resolved PL decay lifetime of CdTe QDs (black curve) and the corresponding CdTe-gypsum nanocomposites (blue curve) as well as their fitting curves. ($\lambda_{ex} = 370$ nm).

Fig. S8 XRD pattern of CdTe QDs after UV irradiation for two days. The blue marks show the existance of Te.

Fig. S9 Digital image of CdTe-gypsum nanocomposites after being stored over 4 years in ambient condition (a) under daylight and (b) 365 nm UV light. (c) PL spectrum of CdTe-gypsum nanocomposites after being stored over 4 years.

Fig. S10 EL spectrum of the WLED crafted by using YAG: Ce³⁺ phosphors excited with a blue InGaN chip