Supplementary Information

High-*k* polymer materials containing cyclic carbonate as gate dielectrics for application in low-voltage operating organic thin-film

transistors

Jiawei Zou, ^a Shizhang Li, ^b He Wang, ^c Wei Wang, ^{*b} Zuosen Shi, ^a Yuhang Jiang, ^a Zhanchen Cui ^{*a} and Donghang Yan ^c

^a State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China

E-mail: cuizc@jlu.edu.cn; Fax: +86-431-85193423; Tel: +86-431-85168930

^b State Key Laboratory on Integrated Optoelectronics, Jilin University Region, Changchun 130012,
PR China

^c State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130012, PR China

Materials

All materials such as glycidyl methacrylate (GMA), 2-(2-methoxyethoxy) ethyl methacrylate (MEEMA) and poly(ethylene glycol) dimethyl ether (PEG DME 500) were used as received. The CO₂ was used in a purity of 99.9%. The CaI₂ was used anhydrous with a purity of \geq 99% and stored under N₂ conditions. 2,2-Azobisisobutyronitrile (AIBN) was recrystallized in ethanol before use. The tetrahydrofuran (THF), ethyl acetate (EA) and hexane were purified by distillation.

Scheme S1. The synthesis routes of P(MEEMA-CMA-GMA).

Synthesis of (2-oxo-1,3-dioxolan-4-yl)methyl methacrylate (CMA).

Compound CMA¹: Glycidyl methacrylate (GMA) (28.43g, 200mmol) was added to a mixture of CaI₂ (2.94g, 10mmol) and poly(ethylene glycol) dimethyl ether (PEG DME 500) (5g, 10mmol) at

room temperature by bubbling CO₂ for 24 hours. The reaction mixture was filtered and column chromatography eluting with EA : hexane (1 : 5 v/v) was performed to purify the product obtained by removing the solvent under reduced pressure. The target compound was liquid of 27.94 g (75%). ¹H NMR (500 MHz, CDCl₃, δ , ppm): 6.15-6.17 (s, 1H), 5.66-5.68 (m, 1H), 4.95-5.0 (m, 1H), 4.56-4.60 (t, 1H), 4.41-4.46 (dd, 1H), 4.32-4.37 (m, 2H), 1.95-1.97 (s, 3H).

Fig. S2. The ¹H NMR spectra and structure of three copolymers (CDCl₃, 500 MHz).

Fig. S3. Optical images of uncross-linked film (a) and cross-linked film (b) after soaking in

DMF for different time period.

Fig. S4. (a), (b) and (c) Output characteristic curves and (d), (e) and (f) transfer characteristic curves of n-type F₁₆CuPc TFTs with these P(MEEMA-CMA-GMA) copolymers as the dielectric layers.

Fig. S5. (a), (b) and (c) transfer characteristic curves of p-type C_{10} -DNTT TFTs with these P(MEEMA-CMA-GMA) copolymers as the dielectric layers. (d), (e) and (f) gate leakage current curves of p-type C_{10} DNTT TFTs with these P(MEEMA-CMA-GMA) copolymers as the dielectric layers.

Table S1. The molar ratios of the monomers in the structures of P(MEEMA-CMA-GMA)

	1	5			
Nome of conclumor	Comp. mol %				
	MEEMA	СМА	GMA		
P(MEEMA-CMA-GMA)-1	13	4	1		
P(MEEMA-CMA-GMA)-2	11	6	1		
P(MEEMA-CMA-GMA)-3	10	7	1		

copolymers

Table S2. Transistor parameters for F₁₆CuPc based on P(MEEMA-CMA-GMA)

	1		1 . 1		1
ഹ	nol	vmer	die	lectric.	lavere
νu	JUI	y III CI	ulu		layers
		-1			-1

-

OS	Dielectric layer	Mobility ^a	On/off ratio ^b	Threshold voltage ^c
		$(cm^2 V^{-1} s^{-1})$		(V)
F ₁₆ CuPc	P(MEEMA-CMA-	0.0051	2.22×10^2	2
	GMA)-1			
	P(MEEMA-CMA-	0.0024	3.15×10^2	-1
	GMA)-2			

P(MEEMA-CMA- 0.0028 1.93×10^{1} -0.2 GMA)-3 -4 Average field-effect mobility, ^baverage on/off ratio and ^caverage threshold voltage of 10 OTFTs.

REFERENCES

(1) Steinbauer, J.; Werner, T. Poly(ethylene glycol)s as Ligands in Calcium-Catalyzed Cyclic Carbonate Synthesis. *ChemSusChem* **2017**, *10*, 3025-3029.