Supporting Information

Fine tuning of pyridinium-functionalized dibenzo[a,c]phenazine nearinfrared AIE fluorescence biosensor for detection of lipopolysaccharide, bacterial imaging and photodynamic antibacterial therapy

Xianglong Liu^a, Zhicheng Yang^a, Weibo Xu^{b,c}, Yanmeng Chu^d, Ji Yang^a, Yongchao Yan^a, Yue Hu^d, Yu Wang^{b, c*} and Jianli Hua^{a*}

^aKey Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, 200237, Shanghai, P. R. China. E-mail: <u>jlhua@ecust.edu.cn</u>;

^bDepartment of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China. E-mail: <u>neck130@hotmail.com</u>

^cDepartment of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R China

^dWuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.

Table of Contents

Table S1 The reported work previously	S3
UV-Vis absorption spectra of ABDA/RB mixture under light irradiation	S5
Agar plates containing 0-50 µM BD2C plated with bacteria	S5
Cell viability of RAW264.7 incubated with 0-20 µM of BD2C/BD8C/BD16C for 24h	S5
Original molecular orbital distributions and energy optimized of BD2C/BD8C/BD16C) in
vacuum	S6
Calculation Methodology	S6
Original spectral date	S8

				1	
Probe structure	Fluorescence	Range of	LOD	Time	Ref.
	change	linear			
		correlation			
	Turn on		4 nM	immodiately	1
	1 u111-011	0-0.5 μΜ	4 III VI	inineuratery	1
	515 nm				
<u></u> г					
	Datiamatria	0.2.20M	270 mM	Not	2
	Kationieuric	0.5-50 µM	270 pivi	Not	2
	566 nm to			mentioned	
	600 nm				
∧ ∧N±Br Br					
i i i i i i i i i i i i i i i i i i i					
S " S "					
	Turn-on	0.1-1.5	100 nM	Upon	3
	486 nm	uМ		addition	
N ⁺					
Magnetic_pano_particals	Turn₋On	2_20 µM	280 ng	15 min	Δ
Wagnetie-nano-particais	520 mm	$2-20 \mu W$	200 llg	15 1111	-
	539 nm		mL ¹		
gold nanonarticles	Turn-on			10 min	5
gora nanoparticles	510 nm			10 11111	5
		1.2.50	0.070		-
	Ratiometric	1.3–68	0.068		6
	395 nm to	μM	μM		
	489 nm				
\[\] \[
$\int_{-\infty} N^+$					
.N ⁺ −∕					
C ₁₄ H ₂₉					

Table S1 The reported work previously

\bigcirc	Turn-on			7
	515 nm			
	Turn-on	0.5-1.5	about	8
	588 and 520	μΜ	0.5 µM	
H ₃ C _N H ₀ H ₀ H ₀ H ₀	nm of sensors			
С́Н ₃ С́Н ₃	1 and 2			
				9

1. G. Jiang, J. Wang, Y. Yang, G. Zhang, Y. Liu, H. Lin, G. Zhang, Y. Li and X. Fan, *Biosens. Bioelectron.*, 2016, **85**, 62-67.

2. M. Lan, J. Wu, W. Liu, W. Zhang, J. Ge, H. Zhang, J. Sun, W. Zhao and P. Wang, *J Am Chem Soc*, 2012, **134**, 6685-6694.

3. L. T. Zeng, J. S. Wu, Q. Dai, W. M. Liu, P. F. Wang, and C. S. Lee, *org. lett.*, 2010, 12,4014 4017
4. F. Liu, J. Mu, X. Wu, S. Bhattacharjya, E. K. Yeow and B. Xing, *Chem. Commun. (Camb)*, 2014, 50, 6200-6203.

5. J. Gao, Y. Lai, C. Wu and Y. Zhao, Nanoscale, 2013, 5, 8242-8248.

6. Q. Dai, W. Liu, X. Zhuang, J. Wu, H. Zhang and P. Wang, Anal. Chem., 2011, 83, 6559-6564.

7. J. Wu, A. Zawistowski, M. Ehrmann, T. Yi and C. Schmuck, J. Am. Chem. Soc., 2011, 133, 9720-9723.

8. So"hnke Voss, Rainer Fischer, Gu"nther Jung, Karl-Heinz Wiesmu" ller, and Roland Brock, *J. Am. Chem. Soc.*, 2006, **129**, 554-561.

9. Marianne Rangin and Amit Basu, J. Am. Chem. Soc., 2004, 126, 5038-5039.

UV-Vis absorption spectra of ABDA/RB mixture under light irradiation

Fig. S1 UV-Vis absorption spectra of ABDA/RB mixture in DMSO and PBS mixtures (99.8% PBS in volume) under 530nm light irradiation.

Agar plates containing 0-50 µM BD2C plated with bacteria

Fig. S2 Agar plates containing 0-50 µM BD2C plated with bacteria.

Cell viability of RAW264.7 incubated with 0-20 µM of BD2C\BD8C\BD16C for 24h

Fig. S3 The cell viability of RAW264.7 incubated with 0-20 µM of BD2C\BD8C\BD16C for 24h.

Original molecular orbital distributions and energy optimized of BD2C/BD8C/BD16C in vacuum

	BD2C	BD8C	BD16C				
LUMO+1	-3.44 eV	-3.36 eV	-3.36 eV				
LUMO	-4.79eV	-4.69eV	-4.69eV				
НОМО	-6.98eV	-6.96eV	-6.96eV				
HOMO-1	-8.52eV	8.54eV	-8.52eV				
$S_1 = 1.1724$ $T_1 = 1.1128$ $T_2 = 1.6835$							
$S_1 = 1.2$	$S_1 = 1.2464$ $T_1 = 1.1541$ $T_2 = 1.7387$						

Table S2. Molecular orbital distributions and energy optimized in vacuum (isodensity=0.020 a.u.).

Calculation Methodology

 $S_1 = 1.2495$

 $T_1 = 1.1560$

BD2C BD8C

BD16C

Geometry optimizations were carried out on the molecules 2C in the gas phase, using the software Avogadro¹ to enter the starting geometry. The molecules were distorted to form a variety of conformers which were then allowed to optimize, in order to find the global minimum on the potential energy surface. Frequency calculations were performed on all the optimized geometries to distinguish whether they were minima or transition states on the potential energy surfaces. Where transition state geometries were found, the bond lengths and angles were distorted in the direction of the vibration and the structure was reoptimised until only positive frequencies were obtained. All calculations were carried out using the Gaussian 09 program² with the CAM-B3LYP functional³ and the standard 6-31G(d) basis set.

 $T_2 = 1.7410$

1. M. D. Hanwell et al. J. Cheminfor. 2012, 4, 17.

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

3. Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377.

Original spectral date.

Fig. S3 ¹H NMR spectrum of BD2C in CDCl₃

Fig. S4 ¹³C NMR spectrum of BD2C in CDCl₃

HL-YJ-702 30 ((0.472) Cm (29:30)						1	: TOF MS ES+
100				689	9.2931			1.528+005
%	c				690.2975 691.2949			
0-4-0-4-0-4-0-4-0-4-0-4-0-4-0-4-0-4-0-4	629.4955 _{635.} 610 620 630	4258 645.4 640 650	866 6 660 6	73.5309 100 ¹ 100110010 70 680	699.4103 690 700	727.4443 ₇₃₃ 710 720 730	.5330 761.571 740 750 760	2 777.5831 mighting m/z 770
Minimum: Maximum:		30.0	30.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
689.2931	689.2917	1.4	2.0	31.5	8.6	0.0	C47 H37 N4 O2	

Fig. S5 HR mass spectrum of BD2C

Fig. S6 ¹H NMR spectrum of **BD8C** in CDCl₃

Fig. S7 ¹³C NMR spectrum of **BD8C** in CDCl₃

Fig. S8 HR mass spectrum of BD8C

Fig. S10¹³C NMR spectrum of **BD16C** in CDCl₃

Elemental Composition Report

Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 4 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass) Elements Used: C: 0-61 H: 0-66 N: 0-4 O: 0-2 JL-HUA ECUST institute of Fine Chem 23-Jun-2015 13:15:12 1: TOF MS ES+ 2.11e+003 HL-JT-303 220 (1.464) Cm (220:225) 885.5103 100-886.5132 %-887.5154 877.4404 878.4407 865.6059 0¹,..., 1,..., 1,..., 1,..., 1,..., 1,..., 1,..., 1,..., 1,..., 1,..., 1,..., 1,..., m/z 866.0 868.0 870.0 872.0 874.0 876.0 878.0 880.0 882.0 884.0 886.0 888.0 Minimum: Maximum: 300.0 50.0 ^{-1.5} DBE i-FIT i-FIT (Norm) Formula Mass Calc. Mass mDa PPM 885.5103 885.5102 -0.5 -0.6 31.5 9.3 0.0 C61 H65 N4 02

Page 1