Electronic

Supplementary Information

Nanoporous Photonic Crystals with Tailored Surface Chemistry for Ionic Copper Sensing

Chris Eckstein^{a,d}, Cheryl Suwen Law^{a,b,c}, Siew Yee Lim^{a,b,c}, Simarpreet Kaur^a, Tushar Kumeria^e, Josep Ferré-Borrull^{*d}, Andrew D. Abell^{*b,c,f}, Lluís F. Marsal^{*d} and Abel Santos^{*a,b,c}

^aSchool of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia.

^bInstitute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia.

^cARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia 5005, Australia.

^dDepartment of Electronic, Electric, and Automatics Engineering, Universitat Rovira i Virgili, Tarragona, Tarragona 43007, Spain.

^eSchool of Pharmacy, The University of Queensland, Brisbane, Queensland 4012, Australia.

^fDepartment of Chemistry, The University of Adelaide, Adelaide, South Australia 5005 Adelaide, Australia.

*E-Mails: josep.ferre@urv.cat; lluis.marsal@urv.cat; andrew.abell@adelaide.edu.au; abel.santos@adelaide.edu.au

Figure S1. Dynamic flow cell system used to quantify spectral shifts in PEI-GA-PEI-functionalized NAA-GIFs. Reflection spectra were measured using miniature optical fiber spectrophotometers combined with a transparent flow cell based on acrylic plastic to create a microfluidics continuous flow system. The system is composed of a bifurcated optical probe, in which one of the arms carries white light from the tungsten source (LS-1LL, Ocean optics, USA). The optical probe illuminates white light onto the sensing platform over a spot size of ~2 mm in diameter. Subsequently, the reflected light is collected by the other arm (i.e. collection fiber integrated into the same optical probe), which is guided to the miniature spectrophotometer for real-time monitoring and quantification.

Figure S2. Top view FEG-SEM images of representative NAA-GIFs before (a) and after (b) functionalization with PEI-GA-PEI functional layers (scale bars = 500 nm) (NB: NAA-GIFs fabricated with $T_P = 600$ s).

Figure S3. Reflection spectra of NAA-GIFs produced by SPA with varying anodization period, showing the tuneability and resolution of the characteristic photonic stopband (PBS) across the spectral regions, from visible to NIR: a) $T_P = 500$ s, b) $T_P = 600$ s, c) $T_P = 700$ s, and d) $T_P = 1500$ s (NB: *FWHM*_{PSB} = 3.87 ± 0.02, 4.74 ± 0.02, 5.46 ± 0.02 and 105.54 ± 1.04 nm for NAA-GIFs produced with $T_P = 500$, 600, 700 and 1500 s, respectively).

Figure S4. Real-time monitoring of copper ions binding as a function of $[Cu^{2+}]$, from 1 to 100 mM, using $\Delta \lambda_{PSB}$ as sensing parameter in PEI-GA-PEI-functionalized NAA-GIFs produced with: a) $T_P = 500$ s, b) $T_P = 600$ s, c) $T_P = 700$ s, and d) $T_P = 1500$ s.

Figure S5. Langmuir and Freundlich isotherm models and experimental data describing the binding mechanism of copper ions by PEI-GA-PEI-functionalized NAA-GIFs produced with: a) $T_P = 500$ s, b) $T_P = 600$ s, c) $T_P = 700$ s, and d) $T_P = 1500$ s.