Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Design principle for p-type oxide gate layer on AlGaN/GaN toward

normally-off HEMTs: Li-doped NiO as model +

Guanjie Li,^{ac} Xiaomin Li,^{*ab} Junliang Zhao,^d Fawang Yan,^d Qiuxiang Zhu^a and Xiangdong Gao^{ab}

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, No. 1295 Dingxi Road, Shanghai, 200050, PR China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, PR China

^c University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, PR China ^d Nanjing NanoArc New Materials Technology Co., Ltd., No. 37 Jiangjun Avenue, Nanjing, 211100, PR China

* Corresponding Author:

Prof. Xiaomin Li: E-mail: <u>lixm@mail.sic.ac.cn</u>; Tel: +86-21-52412554; Fax: +86-21-52413122

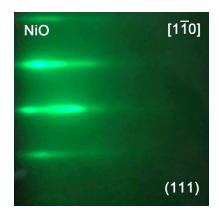


Fig. S1. RHEED pattern of NiO thin films on Al₂O₃ substrates.

Fig. S1 shows the RHEED pattern of NiO thin films on Al_2O_3 substrates. The above similar RHEED pattern with NiO on GaN indicates the similar epitaxial crystal structure of NiO thin films on GaN and Al_2O_3 substrates.

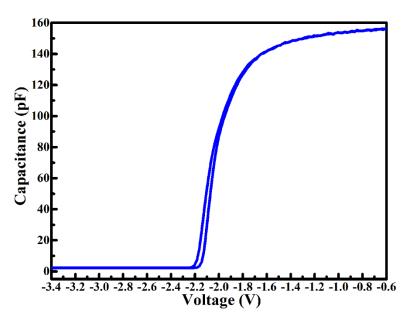


Fig. S2. C-V characteristic of Pt/Ni_{0.75}Li_{0.25}O/AlGaN/GaN/Si heterostructure.

Fig. S2 displays C-V curve of Pt/Ni $_{0.75}$ Li $_{0.25}$ O/AlGaN/GaN/Si heterostructure. The small voltage window indicates good interfacial state at Ni $_{0.75}$ Li $_{0.25}$ O/AlGaN interface.

E _C ^{NLO}		
E_g^{NLO} =3.65 eV	E _C AGN	ΔE_{C3} =0.33 eV E_C^{GN}
	E_g^{AGN} =3.84 eV	<i>E</i> ^{GN} _g =3.84 eV
Ni _{0.75} Li _{0.25} O		1.95 ev
$E_V^{\text{NLO}} \Delta E_V = 1.56 \text{ eV}$	Al _{0.22} Ga _{0.78} N	GaN
	E_V^{AGN}	$E_V^{ m GN}$

Fig. S3. Band alignment of $Ni_{0.25}Li_{0.25}O/AI_{0.22}Ga_{0.78}N/GaN$ heterostructure.

Fig. S3 shows the band alignment of Ni_{0.75}Li_{0.25}O/Al_{0.22}Ga_{0.78}N/GaN heterostructure. The ratios of conduction band discontinuities to valence band discontinuities are 75:25 for AlGaN/GaN interface in the reported results.³⁶ Thus the valance band offset (ΔE_{C3}) value at Al_{0.22}Ga_{0.78}N/GaN interface is calculated to be 0.33 eV. Therefore, intrinsic $E_C^{GaN} - E_V^p$ value is determined to be 1.95 eV calculated by $E_g^{AGN} - \Delta E_V - \Delta E_{C3}$.