Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Monolayer MoSe₂/NiO van der waals heterostructure for infrared light-emitting diode

Caiyun Wang, Zhe Kang, Zhi Zheng, Yanan Zhang, Louwen Zhang, Jun Su, Zhi Zhang, Nishuang Liu, Luying Li, Yihua Gao*

*Corresponding writer: Yihua Gao E-mail:gaoyihua@hust.edu.cn

Figure S1. (a) The as-transferred monolayer n-MoSe₂/p-NiO van der waals heterostructure. (b) The temperature curve of MoO₃ and Se powder in the synthesis process of MoSe₂.

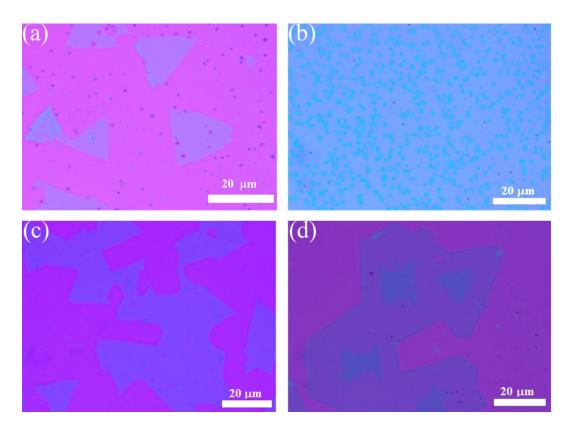


Figure S2. (a) The monolayer MoSe₂ interluded with pole synthesized at the signal temperature of 560 °C. (b) The monolayer MoSe₂ with large nucleation density synthesized at the signal temperature of 600 °C. (c) The large tract of MoSe₂ monolayer. (d) The large tract of MoSe₂ bilayer.

Figure S3. (a) The X-ray diffraction pattern of NiO thin film. (b) The EL peak at 918 nm of monolayer n-MoSe₂/p-NiO LED changes with relation to the increase of MoSe₂ size. (c) The EL intensity of n-MoSe₂/p-NiO changes with relation to the increase of positive bias voltage. (d) The energy band diagram of n-MoSe₂/p-NiO LED under large positive bias.