Supplementary Information

Dinuclear Ir(III) complexes with asymmetrical bridging ligands as highly efficient phosphors for single-layer electroluminescent devices

Hui-Ting Mao,^a Yang Cui,^a Guang-Fu Li,^a Guo-Gang Shan,^{a,*} Qun-Ying Zeng,^{b,*} Fu-Shan Li,^b Zhong-Min Su,^{a, c*}

^a Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China. E-mail:shangg187@nenu.edu.cn (G. Shan); zmsu@nenu.edu.cn (Z. Su)
^b Institute of Optoelectronic Technology, FuZhou University, FuZhou, 350002, P. R. China. E-mail: qyzeng@fzu.edu.cn (Q. Zeng)
^c Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun, 130022, P. R. China.

Table of Contents

- 1. Experimental section
- 2. Scheme S1. Synthetic routes of L1 and L2.
- 3. Scheme S2. Synthetic routes of s-DIr1-dfppz, as-DIr2-dfppz, and as-DIr3-ppy.
- 4. Scheme S3. Chemical structures of the mononuclear Ir(III) complexes.
- 5. Table S1. Photophysical properties of the mononuclear Ir(III) complexes.
- 6. Table S2. Crystal data and structure refinement of *s*-DIr1-dfppz.
- 7. Figure S1. ¹H NMR spectrum of *s*-DIr1-dfppz in DMSO- d_6 .
- 8. Figure S2. ¹H NMR spectrum of *as*-DIr2-dfppz in DMSO- d_6 .
- 9. Figure S3. ¹H NMR of spectrum *as*-DIr3-ppy in DMSO- d_6 .
- 10. Figure S4. PL spectra of the dinuclear Ir(III) complexes at 77 K.
- 11. Figure S5. PL spectra of *s*-DIr1-dfppz and *as*-DIr2-dfppz in CH₃CN/water mixtures with different water fractions (f_w).
- Figure S6. Electron density contours and spin-density distribution calculated for the lowest triplet state of *s*-DIr1-dfppz, *as*-DIr2-dfppz, and *as*-DIr3-ppy.
- Figure S7. Difference electron density (0.003 e⋅bohr⁻³) computed by subtracting the electron densities of the T₁ and S₀ states for *s*-DIr1-dfppz, *as*-DIr2-dfppz, and *as*-DIr3-ppy.
- 14. **Table S3**. Calculated energy levels, oscillator strengths, and orbital transition analyses of T₁ states for *s*-**DIr1-dfppz**, *as*-**DIr2-dfppz**, and *as*-**DIr3-ppy**.
- 15. Figure S8. Chemical structures of the dinuclear Ir(III) complexes and the corresponding performances of solution-processed devices in reported works.
- 16. **Table S4**. Summary of representative performances of solution-processed devices based on dinuclear Ir(III) complexes in reported works.

Experimental section

General Methods

All reagents and solvents were procured from commercial sources and used without further purification. All reactions were performed under a Ar₂ atmosphere. ¹H NMR spectra were recorded on a Bruker Avance 500 MHz spectrometer with tetramethylsilane (TMS) as an internal standard. Mass spectra data was measured on matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry. UV-vis absorption spectra and PL emission spectra of these dinuclear cationic Ir(III) complexes were recorded on Cary 500 UV-Vis-NIR spectrophotometer and FL-4600 FL spectrophotometer, respectively.

Single Crystal X-Ray Diffraction Analysis

Single crystal of *s*-DIr1-dfppz was cultivated from CH₂Cl₂, CH₃OH and ether solutions by slowly evaporating the solutions. The single-crystal X-ray diffraction data for the dinuclear cationic Ir(III) complex was obtained on a Bruker Apex CCD II area-detector diffractometer. The structures were refined by the full-matrix least-square on the SHELXL-97 program.

Theoretical calculations

Theoretical calculations on the ground and excited electronic states of the dinuclear Ir(III) complexes *s*-DIr1-dfppz, *as*-DIr2-dfppz, and *as*-DIr3-ppy were carried out using density functional theory (DFT) at the B3LYP level. A Double- ξ quality basis set containing LANL2DZ was employed for Ir atom, while a 6-31G* basis set for other atoms. Theoretical calculations were performed with the Gaussian 09 software package. Electrochemical Measurements

Electrochemical measurements of the dinuclear cationic Ir(III) complexes were performed using cyclic voltammetry (CV) and recorded in CH₃CN solution (10^{-3} M) with a scan rate of 100 mV s⁻¹. Tetrabutylammo-nium perchlorate (Bu₄NClO₄) (0.1 M) in CH₃CN was used as the supporting electrolyte and the ferrocene acted as the internal standard. The HOMO/LUMO energy levels and the energy gap (ΔE) of the complexes were calculated from the first oxidation potential (E_{ox}) and first reduction (E_{red}) potential.

Synthesis of L1

2-(pyridin-2-yl)-1*H*-benzo[d]imidazole(6.00 g, 30.73 mmol), K₂CO₃ (4.25 g, 30.73 mmol), and KOH (1.72 g, 30.73 mmol) were dissolved in acetone. After the mixture was stirred and refluxed for 1 h, 1,4-dibromobutane (4.40 mL, 36.88 mmol) in acetone was added and then the mixture was refluxed overnight under Ar₂ atmosphere. The solvent was removed in vacuo and the residue was extracted by CH₂Cl₂, and column chromatography gave the intermediate product (1-(4-bromobutyl)-2-(pyridin-2-yl)-1Hbenzo[d]imidazole). Then, 2-(pyridin-2-yl)-1H-benzo[d]imidazole (1.41 g, 4.27 mmol), K₂CO₃ (0.59 g, 4.27 mmol), and KOH (0.24 g, 4.27 mmol) were added to acetone solution. After the mixture was stirred and refluxed for 1 h, intermediate product (1-(4-bromobutyl)-2-(pyridin-2-yl)-1H-benzo[d]imidazole) (1.00 g, 5.12 mmol) in acetone was added and then the mixture was refluxed overnight under Ar₂ atmosphere. The solvent was removed under vacuum and the the resulting solid was extracted with CH₂Cl₂. The organic layer was collected and dried with Na₂SO₄. The solvent was removed in vacuo, and then the residue was purified by silica gel column chromatography to afford a white powder with a yield of 80%. ¹H NMR (500 MHz, CDCl₃, δ [ppm]): 8.54-8.55 (m, 2H), 8.40 (d, *J* = 8.0 Hz, 2H), 7.08-7.85 (m, 4H), 7.37-7.38 (m, 2H), 7.26-7.33 (m, 6H), 4.86 (t, J = 7.0 Hz, 4H), 2.01 (t, J = 7.0 Hz, 4H). MS [m/z]: Calcd for C₂₈H₂₄N₆: 444.2, Found 444.2 [M]⁺.

Synthesis of L2 Yield 73%. ¹H NMR (500 MHz, CDCl₃, δ [ppm]): 8.56-8.61 (m, 2H), 8.39 (d, J = 8.0 Hz, 1H), 8.30-8.32 (m, 1H), 8.16 (d, J = 7.5 Hz, 2H), 7.77-7.84 (m, 3H), 7.39-7.47 (m, 4H), 7.24-7.32 (m, 4H), 4.88-4.92 (m, 4H), 1.99-2.10 (m, 4H). MS [m/z]: Calcd for C₂₉H₂₅N₇: 471.2, Found 471.2 [M]⁺.

Synthesis of *s*-DIr1-dfppz. dfppz (2.52 g, 14.00 mmol) and IrCl₃·3H₂O (2.12 g, 6.00 mmol) were added to a 250 mL round-necked flask. Then 2-ethoxyethanol (120 mL) and water (40 mL) were added to the flask sequentially. The mixture was refluxed for 24 h under Ar₂ atmosphere. After cooling, the resulting precipitate was collected by filtration and washed with water and enthanol. The dried chloro-bridged dimer (0.58 g, 0.50 mmol) and L1 (0.20 g, 0.45 mmol) in ethylene glycol were heated to 150 °C for 12 h under Ar₂ in the dark. After cooling to room temperature, the reaction mixture was poured into saturated aqueous NH₄PF₆ solution, resulting in a green suspension. The suspension was filtered and extracted with CH₂Cl₂. The crude product was purified by silica gel column chromatography using CH₃COOC₂H₅:CH₂Cl₂ in 1:1 (v:v) ratio as the eluent to afford the desired Ir(III) complex. Yield 75%. ¹H NMR (500 MHz, *d*₆-DMSO,

ppm): δ 8.59-8.67 (m, 4H), 8.58 (d, *J* = 3.0 Hz, 2H), 8.28-8.33 (m, 2H), 8.20 (d, *J* = 5.0 Hz, 2H), 7.95 (t, *J* = 7.5 Hz, 2H), 7.73-7.77 (m, 2H), 7.46-7.50 (m, 2H), 7.26-7.29 (m, 4H), 7.14-7.23 (m, 6H), 6.72-6.75 (m, 4H), 6.36 (d, *J* = 8.0 Hz, 2H), 5.68-5.71 (m, 4H), 4.92-4.95 (m, 4H), 2.16-2.20 (m, 4H). MS [m/z]: Calcd for C₆₄H₄₄F₂₀Ir₂N₁₄P₂: 1836.2, Found 1836.2 [M]⁺. Anal. Calcd for C₆₄H₄₄F₂₀Ir₂N₁₄P₂: C, 41.88; H, 2.42; N, 10.68. Found: C, 41.82; H, 2.39; N, 10.72.

Synthesis of *as*-**DIr2-dfppz.** Yield 66%. ¹H NMR (500 MHz, *d*₆-DMSO, ppm):8 8.69-8.71 (m, 1H), 8.65 (s, 1H), 8.58-8.63 (m, 2H), 8.56 (s, 1H), 8.49 (d, J = 2.5 Hz, 1H), 8.37 (t, J = 8.0 Hz, 1H), 8.26-8.32 (m, 1H), 8.15-8.18 (m, 1H), 8.01 (t, J = 8.0 Hz, 2H), 7.68-7.76 (m, 3H), 7.37-7.45 (m, 2H), 7.15-7.24 (m, 6H), 7.10-7.13 (m, 1H), 6.98-7.03 (m, 2H), 6.85-6.87 (m, 1H), 6.74-6.82 (m, 3H), 6.63-6.68 (m, 2H), 6.59-6.62 (m, 1H), 6.36 (m, 1H), 5.65 (t, J = 6.5 Hz, 2H), 5.56 (t, J = 5.0 Hz, 1H), 5.05 (d, J = 7.5 Hz, 3H), 4.84-4.92 (m, 2H), 2.12-2.50 (m, 4H). MS [m/z]: Calcd for C₆₅H₄₅F₂₀Ir₂N₁₅P₂: 1863.2, Found 1863.2 [M]⁺. Anal. Calcd for C₆₅H₄₅F₂₀Ir₂N₁₅P₂: C, 41.92; H, 2.44; N, 11.28. Found: C, 41.85; H, 2.48; N, 11.25.

Synthesis of *as*-**DIr3-ppy.** Yield 72%. ¹H NMR (500 MHz, *d*₆-DMSO, ppm): δ 8.71 (t, J = 9.5 Hz, 1H), 8.58 (t, J = 9.0 Hz, 1H), 8.33 (t, J = 8.0 Hz, 1H), 8.28 (d, J = 8.5 Hz, 2H), 8.23 (t, J = 8.0 Hz, 2H), 8.14 (m, 1H), 7.98 (s, 2H), 7.88-7.95 (m, 5H), 7.86 (t, J = 8.5 Hz, 1H), 7.78-7.82 (m, 2H), 7.70-7.76 (m, 3H), 7.60-7.69 (m, 3H), 7.33-7.39 (m, 2H), 7.21-7.27 (m, 1H), 6.96-7.13 (m, 7H), 6.87-6.92 (m, 5H), 6.78-6.85 (m, 3H), 6.65 (t, J = 7.5 Hz, 1H), 6.56-6.61 (m, 1H), 6.25 (d, J = 8.0 Hz, 1H), 6.20 (m, 2H), 6.03 (t, J = 8.0 Hz, 1H), 5.85-5.88 (m, 1H), 5.04 (s, 2H), 4.86 (m, 2H), 2.06-2.19 (m, 4H). MS [m/z]: Calcd for C₇₃H₅₇F₁₂Ir₂N₁₁P₂: 1761.3, Found 1761.3 [M]⁺. Anal. Calcd for C₇₃H₅₇F₁₂Ir₂N₁₁P₂: C, 49.74; H, 3.26; N, 8.74. Found: C, 49.69; H, 3.21; N, 8.78.

Synthesis of (dfppz)₂**IrL1:** Yield 76%. ¹H NMR (600 MHz, DMSO-*d*₆, δ [ppm]): 8.80 (d, *J* = 12.0 Hz, 1H), 8.64 (d, *J* = 6.0 Hz, 1H), 8.60 (d, *J* = 3.0 Hz, 1H), 8.34-8.37 (m, 1H), 8.16 (d, *J* = 6.0 Hz, 1H), 8.00 (d, *J* = 6.0 Hz, 1H), 7.73 (t, *J* = 6.0 Hz, 1H), 7.49 (t, *J* = 6.0 Hz, 1H), 7.26 (d, *J* = 6.0 Hz, 2H), 7.12-7.22 (m, 3H), 6.73-6.74 (m, 2H), 6.35 (d, *J* = 12.0 Hz, 1H), 5.70-5.73 (m, 2H), 4.47 (s, 3H). MS (MALDI-TOF): m/z 760.2 (M-PF₆).

Synthesis of (dfppz)₂**IrL2:** Yield 65%. ¹H NMR (600 MHz, DMSO-*d*₆, δ [ppm]): 8.63-8.66 (m, 2H), 8.52 (d, *J* = 2.4 Hz, 1H), 8.38 (t, *J* = 6.0 Hz, 1H), 8.02 (d, *J* = 6.0 Hz, 1H), 7.81 (d, *J* = 1.8 Hz, 1H), 7.74 (t, *J* = 6.0 Hz, 1H), 7.35 (s, 1H), 7.26 (t, *J* = 12.0 Hz, 1H), 7.01-7.11 (m, 3H), 7.00 (d, *J* = 6.0 Hz, 2H), 6.84 (t, *J* = 6.0 Hz, 1H), 6.81 (t, *J* = 6.0 Hz, 1H), 6.64-6.68 (m, 1H), 5.57 (d, *J* = 6.0 Hz, 1H), 5.07 (d, *J* = 6.0 Hz, 1H), 4.53 (s, 3H). MS (MALDI-TOF): m/z 787.1 (M-PF₆).

Synthesis of (ppy)₂**IrL1:** Yield 80%. ¹H NMR (600 MHz, DMSO-*d*₆, δ [ppm]): 8.78 (d, *J* = 6.0 Hz, 1H), 8.25-8.31 (m, 2H), 8.19 (d, *J* = 12.0 Hz, 1H), 7.90-7.97 (m, 5H), 7.86 (t, *J* = 12.0 Hz, 1H), 7.69-7.71 (m, 2H), 7.63 (d, *J* = 6.0 Hz, 1H), 7.42 (t, *J* = 12.0 Hz, 1H), 7.10-7.15 (m, 2H), 7.06 (t, *J* = 12.0 Hz, 1H), 7.01-7.04 (m, 2H), 6.90-6.94 (m, 2H), 6.29 (d, *J* = 12.0 Hz, 1H), 6.19-6.22 (m, 2H), 4.46 (s, 3H). MS (MALDI-TOF): m/z 710.2 (M-PF₆).

Synthesis of (ppy)₂**IrL2:** Yield 78%. ¹H NMR (600 MHz, DMSO-*d*₆, δ [ppm]): 8.64 (d, *J* = 12.0 Hz, 1H), 8.29-8.33 (m, 2H), 8.25 (d, *J* = 6.0 Hz, 1H), 8.02 (d, *J* = 12.0 Hz, 1H), 7.96 (t, *J* = 6.0 Hz, 1H), 7.84-7.91 (m, 2H), 7.79 (d, *J* = 5.4 Hz, 1H), 7.69 (t, *J* = 12.0 Hz, 1H), 7.64 (d, *J* = 6.0 Hz, 1H), 7.44 (d, *J* = 6.0 Hz, 1H), 7.27 (t, *J* = 12.0 Hz, 1H), 7.11-7.15 (m, 4H), 6.98 (t, *J* = 12.0 Hz, 1H), 6.89 (t, *J* = 6.0 Hz, 2H), 6.84 (t, *J* = 12.0 Hz, 1H), 5.87 (d, *J* = 6.0 Hz, 1H), 4.53 (s, 3H). MS (MALDI-TOF): m/z 737.2 (M-PF₆).

Scheme S1. Synthetic routes of L1 and L2.

Scheme S2. Synthetic routes of *s*-**DIr1-dfppz**, *as*-**DIr2-dfppz**, and *as*-**DIr3-ppy**. (i) ethylene glycol, 150 °C, 12 h; (ii) aqueous NH₄PF₆ solution.

Scheme S3. Chemical structures of the mononuclear Ir(III) complexes.

Complexes	$\lambda_{PL,max}{}^{a,b}$	${I\!$	$ au^{a,b}$	
1	[nm]	[%]	[µs]	
(dfppz) ₂ IrL1	525, 513	51, 77	2.91, 3.90	
(dfppz) ₂ IrL2	502, 484	27, 65	2.25, 1.85	
(ppy) ₂ IrL1	571, 570	28, 40	2.44, 1.90	
(ppy) ₂ IrL2	573, 553	13, 15	7.38, 1.94	

 Table S1. Photophysical properties of the mononuclear Ir(III) complexes.

^a In CH₃CN at 298 K. ^b In neat film at 298 K.

Table S2. C	rystal data	and structure	refinement	of <i>s</i> -DIr1-dfppz.
-------------	-------------	---------------	------------	--------------------------

Name	s-DIr1-dfppz
Identification code	CCDC 1901587
Formula	$C_{64}H_{44}F_{20}Ir_2N_{14}P_2$
Formula weight	1835.47
Crystal system	Triclinic
Space group	P-1
	a 9.0935(6)
Cell Lengths (Å)	b 13.5384(10)
	c 16.5246(11)
	α 66.373(3)
Cell Angles (°)	β 79.409(3)
	γ 75.388(3)
Cell Volume (Å ³)	1795.7(2)
Z	1
$D_{calcd.}(g m^{-3})$	1.697
F(000)	890.0
R _{int}	0.0833
Goodness-of-fit on F ²	1.083
R_1^{a} , wR_2^{b} [I>=2 σ (I)]	0.0557, 0.1185
R_1 , w R_2 [all data]	0.0791, 0.1312
^a $\mathbf{R}_1 = \overline{\Sigma F_o } - F_c / \Sigma F_o $. ^b wF	$R_2 = \Sigma w(F_o ^2 - F_c ^2) / \Sigma w(F_o^2)^2 ^{1/2}.$

Figure S1. ¹H NMR spectrum of *s*-DIr1-dfppy in DMSO-*d*₆.

Figure S2. ¹H NMR spectrum of *as*-DIr2-dfppy in DMSO-*d*₆.

Figure S3. ¹H NMR spectrum of *as*-DIr3-ppy in DMSO-*d*₆.

Figure S4. PL spectra of the dinuclear Ir(III) complexes at 77 K.

Figure S5. a) PL spectra of *s*-**DIr1-dfppz** in CH₃CN/water mixtures with different water fractions (f_w). Inset: photos of *s*-**DIr1-dfppz** in CH₃CN/water mixtures ($f_w = 0$ and 90%). b) PL spectra of *as*-**DIr2-dfppz** in CH₃CN/water mixtures. Inset: photos of *as*-**DIr2-dfppz** in CH₃CN/water mixtures ($f_w = 0$ and 90%).

Figure S6. Electron density contours (0.04 e·bohr⁻³) calculated for HOMOs and LUMOs of *s*-DIr1-dfppz, *as*-DIr2-dfppz, and *as*-DIr3-ppy. HOMO-2 involved in the excitations for complexes *s*-DIr1-dfppz and *as*-DIr2-dfppz are also shown.

Figure S7. Difference electron density (0.003 e·bohr⁻³) computed by subtracting the electron densities of the T_1 and S_0 states for *s*-DIr1-dfppz, *as*-DIr2-dfppz, and *as*-DIr3-ppy. The charge goes from the red to the green areas.

Table S3. Calculated energy levels, oscillator strengths, and orbital transition analysesof T_1 states for *s*-DIr1-dfppz, *as*-DIr2-dfppz, and *as*-DIr3-ppy.

Complex	State	eV	f	Assignment ^a	Character	
s-DIr1-dfppz	T_1	2.16	0.00	H→L (45%)	³ MLCT/ ³ LLCT	
				H-2→L (42%)	³ MLCT/ ³ LLCT/ ³ ILCT	
as-DIr2-dfppz	T_1	2.15	0.00	H→L (44%)	³ MLCT/ ³ ILCT	
				H-2→L (43%)	³ MLCT/ ³ LLCT/ ³ ILCT	
as-DIr3-ppy	T_1	1.99	0.00	H→L (99%)	³ MLCT/ ³ LLCT	

^a H and L denote the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), respectively.

Figure S8. Chemical structures of the dinuclear Ir(III) complexes and the corresponding performances of solution-processed devices in reported works.

Complex	V _{turn-}	$\lambda_{max,em}$	L_{\max}^{b}	CEc	PEd	EQEe	CIEf	Previous
	ona	(nm)	(cd m ⁻	(cd A ⁻	(lm W ⁻	(%)		report
	(V)		²)	¹)	1)			
DIr1 (multilayer	-	550	13000	-	-	0.8	-	Ref [S1] ¹
doped)								
DIr2 (multilayer	7.5	546	670	12.0	3.5	4.0	-	Ref [S2] ²
doped)								
DIr3 (multilayer	5.5	526	7000	37.0	14.0	11.0	-	Ref [S3] ³
doped)								
DIr4 (multilayer	6.2	526	11000	24.0	7.0	7.0	-	Ref [S3]
doped)								
DIr5 (multilayer	-	533	25400	13.0	1.9	2.9	(0.34,	Ref [S4] ⁴
doped)							0.63)	
DIr6 (multilayer	-	533	25630	11.0	2.4	3.5	(0.34,	Ref [S4]
doped)							0.62)	
DIr7 (multilayer	3.2	564	46206	52.5	51.2	17.9	-	Ref [S5] ⁵
doped)								
DIr8 (multilayer	3.1	598	18410	27.2	19.5	14.4	(0.56,	Ref [S6] ⁶
doped)							0.44)	
DIr9 (multilayer	7.7	551	>6000	9.1	2.2	2.6	(0.44,	Ref [S7] ⁷
doped)							0.54)	
s-DIr1-dfppz	3.0	518	6475	31.2	18.5	8.9	(0.39,	This work
							0.57)	
as-DIr2-dfppz	2.7	517	3368	40.0	14.0	11.6	(0.39,	This work
							0.57)	
as-DIr3-ppy	4.3	580	2558	38.4	15.1	12.9	(0.55,	This work
							0.44)	

Table S4. Summary of representative performances of solution-processed devices

 based on dinuclear Ir(III) complexes in reported works.

^a The turn on voltage estimated at 1 cd m⁻²; ^b The maximum luminance; ^c Maximum CE values; ^d Maximum PE values; ^e Maximum EQE values; ^f CIE coordinates.

- 1 S. Bettington, M. Tavasli, M. R. Bryce, A. S. Batsanov, A. L. Thompson, H. A. Al Attar, F. B. Dias and A. P. Monkman, *J. Mater. Chem.*, 2006, **16**, 1046-1052.
- 2 A. M'Hamedi, A. S. Batsanov, M. A. Fox, M. R. Bryce, K. Abdullah, H. A. Al-Attar and A. P. Monkman, *J. Mater. Chem.*, 2012, **22**, 13529-13540.
- 3 Y. Zheng, A. S. Batsanov, M. A. Fox, H. A. Al-Attar, K. Abdullah, V. Jankus, M. R. Bryce and A. P. Monkman, *Angew. Chem., Int. Ed.*, 2014, 53, 11616-11619.

- 4 A. M'hamedi, M. A. Fox, A. S. Batsanov, H. A. Al-Attar, A. P. Monkman and M. R. Bryce, *J. Mater. Chem. C*, 2017, 5, 6777-6789.
- 5 X. Yang, Z. Feng, J. Zhao, J.-S. Dang, B. Liu, K. Zhang and G. Zhou, ACS Appl. Mater. Interfaces, 2016, 8, 33874-33887.
- 6 X. Yang, X. Xu, J. S. Dang, G. Zhou, C. L. Ho and W. Y. Wong, *Inorg. Chem.*, 2016, 55, 1720-1727.
- 7 M. Y. Wong, G. Xie, C. Tourbillon, M. Sandroni, D. B. Cordes, A. M. Slawin, I. D. Samuel and E. Zysman-Colman, *Dalton Trans.*, 2015, 44, 8419-8432.