Supporting Information

Utilizing heterocyclic effect towards high contrast ratio of mechanoresponsive

 luminescence based on aromatic aldehydesFang Zhang, Xiaozhong Liang, Da Li, Xiangkai Yin, Xia Tian, Bin Li, Hong Xu, Kunpeng Guo*, Jie Li*

Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China.

E-mail: guokunpeng@tyut.edu.cn, lijie01@tyut.edu.cn

Contents

1. Experimental section 2
2. Figures 9
3. Tables 12
4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR 16

1. Experimental section

Materials and characterizations

All solvents and reagents, unless otherwise stated, were of high purity quality and used as received. Starting chemicals and reagents were purchased from commercial sources and used as received without further purification. Reactions were monitored by TLC silica plate ($60 \mathrm{~F}-254$). NMR spectra measurements were carried out at Bruker 600 MHz for ${ }^{1} \mathrm{H}$ NMR and 150 MHz for ${ }^{13} \mathrm{C}$ NMR, using chloroform-d as solvent. Chemical shifts were reported in parts per million (ppm) relative to internal TMS (0 ppm). Splitting patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), or multiplet (m). Mass spectra measured on Microflex MALDI-TOF MS. UV-Vis spectra were recorded in a HITIACH U-3900 spectrometer. Photoluminescent (PL) spectra were recorded in a HORIBA FluoroMax-4 spectrometer. The absolute fluorescence quantum yields of solutions $(10 \mu \mathrm{M})$ and solid powders were measured on HORIBA FluoroMax-4 by using a calibrated integrating sphere. The quartz cuvettes used were of 1 cm path length. Single-crystal X-ray diffraction data were collected on an Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer. The crystal was kept at 173.00(10) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation. Powder X-ray diffraction (XRD) of the samples was characterized using a Philips high resolution X-ray diffraction system (model PW1825). Differential scanning calorimetry (DSC) experiments were recorded on a NETZSCH DSC 204 instrument at a scanning rate of $5 \mathrm{~K} \mathrm{~min}^{-1}$. The transient photoluminescence decay profiles of the solids were recorded using an Edinburgh Instrument FLS980 spectrometer equipped with an EPL-375 picosecond pulsed diode laser.

Synthesis

Scheme S1 Synthetic routes to APCz, APAd, APPo, APPt and APBz.

Synthesis of 1b (3,6-dibromo-9-butyl-9H-carbazole)

3.6-dibromocarbazole ($3.25 \mathrm{~g}, 10 \mathrm{mmol}$), 1-bromobutane ($2.06 \mathrm{~g}, 15 \mathrm{mmol}$) tetrabutylammonium bromide ($160 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{KOH}(2.8 \mathrm{~g}, 50 \mathrm{mmol})$ were dissolved in a mixture of toluene (20 mL) and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$, and subsequently refluxed for 5 h . After cooling to room temperature, the mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were washed with water and dried over anhydrous MgSO_{4}. The product was then obtained by column chromatography on silica gel with petroleum ether/ethyl acetate ($10: 1$ by volume) eluent as a white solid (3.12 $\mathrm{g}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=8.7,1.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.27$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.25$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.81$ (dd, $J=15.0,7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.35$ (dd, $J=15.2,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 139.25,128.95,123.28,111.89,110.34,43.05,30.94,20.45,13.80$. MALDITOF: $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$cacld. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~N}, 381.9551$; found: 381.9549.

Synthesis of 2b (2,7-dibromo-10-butyl-9,9-dimethyl-9,10-dihydroacridine)

The procedure is similar to the synthesis of $\mathbf{1 b}$ but using $\mathbf{2 a}$ instead of 1a. Compound $\mathbf{2 b}$ was obtained as white crystal by silica gel column chromatography (petroleum ether) in an 53% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (dd, $J=8.7,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87-3.82(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{dt}, J=$ $15.5,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.46(\mathrm{~m}, 8 \mathrm{H}), 1.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 139.45,133.97,129.47,127.42,114.27,113.10,45.85,36.53,28.58,27.84$, 20.39, 13.87. MALDI-TOF: $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$cacld. $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{~N}, 423.0020$; found: 423.0019.

Synthesis of 3b (10-butyl-10H-phenoxazine)

10 H -phenoxazine ($1.83 \mathrm{~g}, 10 \mathrm{mmol}$), potassium tert-butoxide ($1.68 \mathrm{~g}, 15 \mathrm{mmol}$), 1bromobutane ($2.06 \mathrm{~g}, 15 \mathrm{mmol}$) were dissolved in THF (30 mL). After stirring the mixture under an ice-water bath for 0.5 h under nitrogen atmosphere, then turn the temperature into $25^{\circ} \mathrm{C}$ for 3 h . The obtained reaction mixture was filtered and removed using a rotary evaporator. The crude product was then subjected to column chromatography on silica gel (petroleum ether) to afford 1.9 g yellowish oil liquid of 3b in a yield of $80 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.68(\mathrm{dd}, J=7.7,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.54$ (d, $J=13.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.37(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.34$ (dt, $J=14.5,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $145.05,133.46,123.62,120.68,115.33,111.29,43.83,27.04,20.21,13.96$. MALDITOF: $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$cacld. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}$, 239.1310; found: 239.1308 .

Synthesis of 4b (10-butyl-10H-phenothiazine)

The procedure is similar to the synthesis of $\mathbf{3 b}$ but using $\mathbf{4 a}$ instead of 3a. Compound 4b was obtained as yellowish oil liquid by silica gel column chromatography (petroleum ether) in an 80% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.17-7.13(\mathrm{~m}, 2 \mathrm{H})$, 7.10 (dd, $J=7.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.82(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{dd}, J=14.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.83(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 129.08, 128.27, 127.46, 127.20, 122.34,
115.43, 47.11, 29.06, 20.24, 13.88. MALDI-TOF: $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$cacld. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NS}$, 255.1082; found: 255.1081 .

Synthesis of 3c (3,7-dibromo-10-butyl-10H-phenoxazine)

Syntheses of $\mathbf{3 c}$ was carried out by the reaction with $\mathbf{3 b}(2.39 \mathrm{~g}, 10 \mathrm{mmol})$ and N bromosuccinimide (NBS) ($4.45 \mathrm{~g}, 25 \mathrm{mmol}$) in THF (40 mL). After stirring the mixture under an ice-water bath for 0.5 h , then turn the temperature into $25^{\circ} \mathrm{C}$ for 1.5 h . The crude product was purified by column chromatography on silica gel using (petroleum ethe), a white crystal with a yield of $75 \%(2.97 \mathrm{~g})$ was obtained. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.89(\mathrm{dd}, J=5.2,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 6.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~s}$, $2 \mathrm{H}), 1.58(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.01-0.97(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.21,132.20,126.54,118.57,112.42,112.19,43.99,26.79,20.10$, 13.87. MALDI-TOF: $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$cacld. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{NO}, 396.9500$; found: 396.9487 .

Synthesis of 4c (3,7-dibromo-10-butyl-10H-phenothiazine)

A potion of $4.45 \mathrm{~g}(25 \mathrm{mmol})$ of N -bromosuccinimide (NBS) in 15 mL of $\mathrm{N}, \mathrm{N}^{\prime}-$ dimethylformamide (DMF) was added dropwise to a solution of compound $\mathbf{4 b}(2.55 \mathrm{~g}$, 10 mmol) in 30 mL of DMF under the nitrogen atmosphere under an ice-water bath then stirred for 30 min . The reaction mixture was stirred for another 10 hours at room temperature. The mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with several times. The combined organic layer was washed with aqueous sodium bisulfite (10 wt $\%$) and then dried over anhydrous MgSO_{4}. The solvent was removed using a rotary evaporator. The crude product was purified by column chromatography on silica gel using (petroleum ether/ ethyl acetate $2 / 1, \mathrm{v} / \mathrm{v}$), a white powder with a yield of $47 \%(1.9$ g) was obtained. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.22(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{dd}, J=$ 9.1, 2.4 Hz, 2H), 7.67 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), $4.34-4.31$ (m, 2H), 1.73 (dd, $J=15.0,7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.43(\mathrm{dd}, J=15.1,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 145.21,132.20,126.54,118.57,112.42,112.19,43.99,26.79,20.10,13.87$. MALDI-TOF: $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$cacld. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{NS}$, 412.9271; found: 412.9269.

Synthesis of APCz (4,4'-(9-butyl-9H-carbazole-3,6-diyl)dibenzaldehyde)

A mixture of 4-formylphenylboronic acid $(2.73 \mathrm{~g}, 22 \mathrm{mmol})$, $\mathbf{1 c}(3.81 \mathrm{~g}, 10 \mathrm{mmol})$, tetrakis(triphenylphosphine) palladium $(0)\left(\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}\right)(576 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(6.9 \mathrm{~g}, 50 \mathrm{mmol})$ in 1,2-glycol dimethyl ether (DME) (100 mL) was stirred at $90^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with chloroform. The extracts were dried over anhydrous MgSO_{4}. After filtration and concentration under reduced pressure, product APCz was obtained as a light yellow solid power using silica gel column chromatography (petroleum ether/ ethyl acetate $5 / 1$, $\mathrm{v} / \mathrm{v})(3.1 \mathrm{~g}, 71 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.08(\mathrm{~s}, 2 \mathrm{H}), 8.45(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.81(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.54 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.45$ (dd, $J=15.2,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.75,150.84,144.05,137.54,133.95$, $133.26,130.45,128.55,126.49,122.30,112.46,46.13,34.08,23.46,16.76$. Anal. Cacld for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{2}$: C, 83.50; H, 5.84; N, 3.25; O, 7.42. Found: C, 83.49; H, 5.85; N, 3.23; $\mathrm{O}, 7.43$. MALDI-TOF: $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$cacld. $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{2}, 431.5550$; found: 431.5548 .

Synthesis of APAd (4,4'-(10-butyl-9,9-dimethyl-9,10-dihydroacridine-2,7-diyl) dibenzaldehyde)

The procedure was similar to the synthesis of $\mathbf{A P C z}$ but using $\mathbf{2 b}$ instead of $\mathbf{1 b}$. Compound APAd was afforded as yellow solid power by using silica gel column chromatography (petroleum ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2 / 1, \mathrm{v} / \mathrm{v}$) in 63% yield. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.05(\mathrm{~s}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.73(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-4.01(\mathrm{~m}$, $2 \mathrm{H}), 1.91(\mathrm{~s}, 2 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 194.68,150.03,143.44,137.49,135.48,134.71,133.26,130.92,129.70$, $128.80,126.63,116.19,48.87,39.45,32.45,31.08,23.35,16.80$. Anal. Cacld for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}_{2}$: C, 83.69; H, 6.60; N, 2.96; O, 6.76. Found: C, 83.70; H, 6.59; N, 2.95; O, 6.76. MALDI-TOF: $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$cacld. $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}_{2}, 437.6160$; found: 437.6157 .

Synthesis of APPo (4,4'-(10-butyl-10H-phenoxazine-3,7-diyl) dibenzaldehyde)

The procedure is similar to the synthesis of $\mathbf{A P C z}$ but using $\mathbf{3 c}$ instead of $\mathbf{1 b}$. Compound APPo was afforded as red solid power by using silica gel column
chromatography (petroleum ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2 / 1, \mathrm{v} / \mathrm{v}$) in 52% yield. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.02(\mathrm{~s}, 2 \mathrm{H}), 7.92-7.90(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{dd}, J=8.3,2.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.97$ (d, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.59$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.58-3.55$ (m, 2H), 1.71 $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{dt}, J=14.8,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.53,148.57,148.04,137.73,136.09,135.26,133.22,129.26$, $125.62,116.90,114.71,80.14,79.93,79.72,46.81,30.15,23.08,16.79$. Anal. Cacld for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{3}$: C, $80.51 ; \mathrm{H}, 5.63$; N, 3.13; O, 10.73. Found: C, $80.54 ; \mathrm{H}, 5.61 ; \mathrm{N}, 3.10$; $\mathrm{O}, 10.75$. MALDI-TOF: $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$cacld. $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{3}, 447.5340$; found: 447.5337 .

Synthesis of APPt (4,4'-(10-butyl-10H-phenothiazine-3,7-diyl) dibenzaldehyde)

The procedure was similar to the synthesis of $\mathbf{A P C z}$ but using $\mathbf{4 c}$ instead of $\mathbf{1 b}$. Compound APPt was was obtained as a yellow solid power using silica gel column chromatography (petroleum ether/ ethyl acetate $2 / 1$, v/v) ($2.3 \mathrm{~g}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO) $\delta 9.97$ (s, 2H), 7.89 (d, $J=8.3 \mathrm{~Hz}, 4 \mathrm{H}$), 7.82 (d, $J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.29$ (dd, $J=8.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.65-3.62$ (m, 2H), 1.55 (dd, $J=14.9,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.42$ (dd, $J=15.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.93$ (t, $J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.51, 147.73, 140.86, 138.28, 136.41, $135.00,134.81,134.53,133.34,131.38,130.01,127.82,119.47,50.98,31.39,22.99$, 16.69. Anal. Cacld for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 77.72 ; \mathrm{H}, 5.44 ; \mathrm{N}, 3.02 ; \mathrm{O}, 6.90 ; \mathrm{S}, 6.92$. Found: C, 77.71; H, 5.45; N, 3.07; O, 6.84; S, 6.93. MALDI-TOF: m/z [M] ${ }^{+}$cacld. $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}, 463.5950$; found: 463.5947.

Synthesis of APBz (2,5-Bis(4-formylphenyl)-3-octyl-phenyl): The procedure was similar to the synthesis of $\mathbf{A P C z}$ but using 5a instead of $\mathbf{1 b}$. Compound $\mathbf{A P B z}$ as white solid was obtained by silica gel column chromatography (petroleum ether/ dichloromethane $=5 / 1, \mathrm{v} / \mathrm{v}$) in a 48% yield. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.08(\mathrm{~s}, 2 \mathrm{H})$, 7.98 (d, $J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.81$ (d, $J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.69$ (s, 1H), 7.50 (s, 2H), $2.79-2.75$ (m, 2H), 1.72 (dt, $J=15.4,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.34$ (ddd, $J=25.7,13.1,6.6 \mathrm{~Hz}, 10 \mathrm{H}), 0.88$ $(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.70,149.91,147.59,143.53$, $138.34,133.19,130.76,130.52,126.85,39.03,34.78,34.48,32.36,32.29,32.15,25.56$, 16.99. Anal. Cacld for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{2}$: C, 84.38; H, 7.59; O, 8.03. Found: C, 84.36; H, 7.57; O, 8.07. MALDI-TOF: $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$cacld. $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{2}, 398.5460$; found: 398.5458 .

2. Figures

Fig. S1 Molecular structure and geometrically optimized 3D molecular model of APBz.

Fig. S2 HOMO and LUMO spatial distributions of $\mathbf{A P B z}, \mathbf{A P C z}, \mathbf{A P A d}, \mathbf{A P P o}$, and APPt by TD-DFT B3LYP/6-31G(d) calculation.

Fig. S3 (a) UV-Vis absorption spectra of APBz in various solvents (10 $\mu \mathrm{M}$) and (b) Luminescence photographs of APBz in various solvents ($10 \mu \mathrm{M}$) under UV irradiation at 365 nm .

Fig. S4 UV-Vis absorption spectra of (a) APCz, (b) APAd, (c) APPo, and (d) APPt in various solvents $(10 \mu \mathrm{M})$.

Fig. S5 Linear correlation of the orientation polarization (Δf) of solvent media with the Stokes shifts (Δv) for APCz, APAd, APPo and APPt.

Fig. S6 DSC curves of $\mathbf{A P B z}$ in pristine state.

Fig. S7 CIE color coordinates of (a) APCz, (b) APAd, (c) APPo and (d) APPt in different solid states on the chromatic diagram.

3. Tables

Table S1 Crystal data and structure refinement for APCz CCDC: 1842477

Identification code	APCz
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{2}$
Formula weight	431.51
Temperature/K	173.00(10)
Crystal system	triclinic
Space group	P-1
a / \AA	10.8799(7)
b/Å	13.3532(8)
c / \AA	17.0824(10)
$\alpha /{ }^{\circ}$	101.465(5)
$\beta /{ }^{\circ}$	97.263(5)
$\gamma{ }^{\circ}$	109.371(6)
Volume $/ \AA^{3}$	2244.3(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.277
μ / mm^{-1}	0.079
$\mathrm{F}(000)$	912.0
Crystal size/mm ${ }^{3}$	$0.21 \times 0.14 \times 0.12$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	6.5 to 52.04
Index ranges	$-13 \leq \mathrm{h} \leq 13,-16 \leq \mathrm{k} \leq 16,-21 \leq 1 \leq 20$
Reflections collected	15843
Independent reflections	$8844\left[\mathrm{R}_{\text {int }}=0.0366, \mathrm{R}_{\text {sigma }}=0.0685\right]$
Data/restraints/parameters	8844/24/625
Goodness-of-fit on F^{2}	1.045
Final R indexes [I>=2 σ (I$)$]	$\mathrm{R}_{1}=0.0603, \mathrm{wR}_{2}=0.1315$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1014, \mathrm{wR}_{2}=0.1608$
Largest diff. peak/hole / e \AA^{-3}	0.21/-0.22

Table S2 Crystal data and structure refinement for APAd CCDC: 1847380

Identification code
APAd
Empirical formula
$\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{2}$

Formula weight	473.59
Temperature/K	173.00(10)
Crystal system	monoclinic
Space group	Cc
a / \AA	22.7890(12)
b/A	11.8841(7)
c/ \AA	38.1493(18)
$\alpha{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	104.566(5)
γ^{\prime}	90.00
Volume/ 3	9999.7(9)
Z	16
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.258
μ / mm^{-1}	0.077
F(000)	4032.0
Crystal size/mm ${ }^{3}$	$0.21 \times 0.15 \times 0.14$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	6.64 to 52.04
Index ranges	$-17 \leq \mathrm{h} \leq 28,-14 \leq \mathrm{k} \leq 14,-45 \leq 1 \leq 47$
Reflections collected	18934
Independent reflections	$12789\left[\mathrm{R}_{\text {int }}=0.0475, \mathrm{R}_{\text {sigma }}=0.0909\right]$
Data/restraints/parameters	12789/2/1309
Goodness-of-fit on F^{2}	1.036
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0730, \mathrm{wR}_{2}=0.1444$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1294, \mathrm{wR}_{2}=0.1876$
Largest diff. peak/hole / e \AA^{-3}	0.34/-0.27
Flack parameter	-1(3)

Table S3 Crystal data and structure refinement for APPo CCDC: 1847379

Identification code	APPo
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{3}$
Formula weight	447.51
Temperature $/ \mathrm{K}$	$173.00(10)$
Crystal system	monoclinic
Space group	$\mathrm{P}_{1} / \mathrm{m}$
a / \AA	$9.3553(5)$
b / \AA	$25.1617(13)$
c / \AA	$9.5973(5)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$95.653(5)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$2248.2(2)$
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.322
μ / mm^{-1}	0.085
$\mathrm{~F}(000)$	944.0
Crystal size $/ \mathrm{mm}{ }^{3}$	$0.24 \times 0.21 \times 0.15$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ} 6.608$ to 52.044	
Index ranges	$-9 \leq \mathrm{h} \leq 11,-15 \leq \mathrm{k} \leq 31,-11 \leq 1 \leq 11$
Reflections collected	10095
Independent reflections	$4524\left[\mathrm{R}_{\text {int }}=0.0399, \mathrm{R}_{\text {sigma }}=0.0622\right]$
Data/restraints $/$ parameters	$4524 / 0 / 348$
Goodness-of-fit on F^{2}	1.063
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0730, \mathrm{wR}_{2}=0.1888$
Final R indexes $[$ all data $]$	$\mathrm{R}_{1}=0.1184, \mathrm{wR}_{2}=0.2220$
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3} 0.37 /-0.24$	

Table S4 The summary of different kinds of noncovalent interactions for compound APCz, APAd and APPo in a crystal cell.

Types of noncovalent interactions	APCz		APAd		APPo	
	distance	number	distance	number	distance	number
$\mathrm{C}-\mathrm{H} . . . \mathrm{O}=\mathrm{C}$	$\begin{gathered} 2.531 \AA, \\ 2.393 \AA, \\ 2.718 \AA \end{gathered}$	3	$\begin{gathered} 2.554 \AA, 2.623 \AA, 2.555 \\ \AA, 2.717 \AA, 2.718 \AA, \\ 2.718 \AA, 2.669 \AA, 2.635 \\ \AA, 2.704 \AA, 2.697 \AA \\ 2.605 \AA, 2.623 \AA \end{gathered}$	11	$\begin{gathered} 2.531 \AA, 2.393 \AA, \\ 2.718 \AA \end{gathered}$	3
C-H... π	$2.886 \AA \text { Å, }$ $2.874 \AA$, 2.857 Å, $2.843 \AA$, $2.845 \AA$	5	$\begin{gathered} 2.871 \AA, 2.855 \AA, 2.884 \\ \AA, 2.868 \AA, 2.841 \AA, \\ 2.852 \AA \end{gathered}$	6	$2.885 \AA 2.765 \AA$	2
C-H...H-C	$2.314 \AA \AA$ $2.239 \AA$	2	2.297 Å	1	1	1
$\pi \ldots \pi$	$\begin{gathered} 3.293 \\ \AA, 3.334 \\ \AA, 3.387 \AA \end{gathered}$	3	1	1	1	1

4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

Fig. $\mathrm{S} 8{ }^{1} \mathrm{H}$ NMR spectrum of 1 b .

Fig. S $9^{1} \mathrm{H}$ NMR spectrum of $\mathbf{A P C z}$.

Fig. S10 ${ }^{1} \mathrm{H}$ NMR spectrum of 2 b .

Fig. S11 ${ }^{1} \mathrm{H}$ NMR spectrum of APAd.

Fig. S12 ${ }^{1} \mathrm{H}$ NMR spectrum of 3 b .
 ©
$1 \mid$

Fig. S13 ${ }^{1} \mathrm{H}$ NMR spectrum of 3c.

Fig. S14 ${ }^{1} \mathrm{H}$ NMR spectrum of APPo.

Fig. $\mathrm{S} 15{ }^{1} \mathrm{H}$ NMR spectrum of 4 b .

Fig. S16 ${ }^{1} \mathrm{H}$ NMR spectrum of 4 c .

Fig. S $17{ }^{1} \mathrm{H}$ NMR spectrum of APPt.

Fig. S18 ${ }^{1} \mathrm{H}$ NMR spectrum of APBz.

Fig. S $19{ }^{13} \mathrm{C}$ NMR spectrum of 1 b .

Fig. S20 ${ }^{13} \mathrm{C}$ NMR spectrum of 2 b .

が

Fig. S21 ${ }^{13} \mathrm{C}$ NMR spectrum of 3 b .

Fig. S22 ${ }^{13} \mathrm{C}$ NMR spectrum of 4 b .

$\bar{\sim}$	-	壳			
\%	-	$\stackrel{\sim}{*}$			

55	145	135	125	115	105	95	85	75	65	55	45	35	25	15

Fig. S23 ${ }^{13} \mathrm{C}$ NMR spectrum of 3 c .

$\underset{\text { ¢ }}{\underset{\sim}{\infty}}$
$\stackrel{\stackrel{\circ}{\infty}}{\stackrel{\infty}{\sim}} \stackrel{\stackrel{\circ}{\Gamma}}{\stackrel{\circ}{\Gamma}}$

Fig. S24 ${ }^{13} \mathrm{C}$ NMR spectrum of 4 c .

Fig. S25 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{A P C z}$.

Fig. S27 ${ }^{13} \mathrm{C}$ NMR spectrum of APPo.

Fig. S28 ${ }^{13} \mathrm{C}$ NMR spectrum of APPt.

Fig. S29 ${ }^{13} \mathrm{C}$ NMR spectrum of APBz.

