Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

I. ELECTRONIC TRANSPORT PROPERTIES OF N-TYPE BI2O2S BULK AND MONO LAYER

FIG. S1. The calculated electronic transport properties as a function of carrier concentration *n* for n-type Bi₂O₂S bulk (a, b, c, d) and n-type mono layer (e, f, g, h) at 300 K: the electrical conductivity σ , Seebeck coefficient *S*, power factor $S^2 \sigma$ and electronic thermal conductivity κ_e .

II. PHONON TRANSPORT PROPERTIES FOR BI2O2S BULK AND MONO LAYER

FIG. S2. The lattice thermal conductivity of Bi₂O₂S bulk (a) and mono layer (b) for different numbers of **q** points ($N_a \times N_b \times N_c$) at 300 K. The lattice thermal conductivity of $N_a = N_b = 34$ for Bi₂O₂S mono layer is outputless.

FIG. S3. The phonon dispersion relations with supercell size $4 \times 4 \times 2$ (a) and $4 \times 4 \times 3$ (b) for Bi₂O₂S bulk. The phonon dispersion relations with supercell size 4×4 (c) for Bi₂O₂S mono layer.

III. TRANSPORT PROPERTIES OF BI₂O₂S BILAYER

FIG. S4. (a) The band structure of Bi_2O_2S bilayer. The Fermi energy is set to 0 eV. (b) The phonon dispersion relations. (c) The calculated lattice thermal conductivity for Bi_2O_2S bilayer.

TABLE S1. The carrier relaxation time for Bi_2O_2S bilayer at 300 K in the *a* and *b* directions. The corresponding DOS effective mass m_{dos}^* , elastic constant *C* and DP constant *E* are also listed.

Carrier type	$m^*_{dos}(m_e)$	<i>C</i> (eV/Å)	E (eV/strain)	$\tau (10^{-14} s)$
Electron	0.47	14.79 (a)	-11.96 (a)	2.79 (a)
		14.53 (b)	-11.70 (<i>b</i>)	2.86 (b)
Hole	-1.91	14.79 (a)	-9.88 (a)	1.00 (a)
		14.53 (b)	-7.90(b)	1.54 (b)

FIG. S5. The calculated transport properties as a function of carrier concentration *n* for p-type (a, b, c, d) and n-type (e, f, g, h) Bi₂O₂S bilayer at 300 K: the electrical conductivity σ , Seebeck coefficient *S*, power factor $S^2 \sigma$ and *ZT* value.