Supporting Information

6*H*-benzo[4,5]thieno[2,3-*b*]indole as a Novel Donor for Efficient

Thermally Activated Delayed Fluorescence Emitters with EQE

Over 20%

Rajendra Kumar Konidena, Kyung Hyung Lee, and Jun Yeob Lee*

School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu,

Suwon, Gyeonggi 440-746, Korea

Email: leej17@skku.edu

Fig. S1.	Emission spectra of the compounds BTITrz (a) and BFITrz (b) collected in different solvents	S2		
Fig. S2	Phosphorescence spectra of the donor and acceptor scaffolds S			
Chart S1	Chemical structures of the similar kind of materials reported in the S literature.			
Table S1	Comparison of EL performance of similar kind of materials reported in the literature	S4		
Fig. S3	¹ H NMR spectra of synBTI recorded in CDCl ₃	S4		
Fig. S4	¹ H NMR spectra of synBFI recorded in CDCl ₃	S5		
Fig. S5	Mass spectra of synBTI.	S5		
Fig. S6	Mass spectra of synBFI.	S6		
Fig. S7	¹ H NMR spectra of BTITrz recorded in CDCl ₃	S6		
Fig. S8	¹³ C NMR spectra of BTITrz recorded in CDCl ₃	S7		
Fig. S9	¹ H NMR spectra of BFITrz recorded in CDCl ₃	S7		
Fig. S10	¹³ C NMR spectra of BFITrz recorded in CDCl ₃	S 8		

Figure S1. Emission spectra of the compounds BTITrz (a) and BFITrz (b) recorded in different solvents.

Figure S2. Phosphorescence spectra of the donor and acceptor scaffolds.

Ņ∽

N

CN

N²

N

Chart S1. Chemical structures of the similar kind of materials reported in the literature.

Compound	$EQE_{\rm max}/_{1000 \text{ cd/m2}}$	$CE_{max}/_{1000 \text{ cd/m2}}$	Ref.
BTITrz	20.7/15.7	63.6/47.5	This work
1	15.2/13.5	46.8/41.0	1
2	6.4/3.5	19.8/10.5	1
3	13.9/9.5	18.3/12.3	2
4	21.4/18.5	60.3/51.5	2
5	20.8/-	56.4/-	3
6	12.5/-	-	4
7	10.8/-	-	5
8	16.7/-	-	6
9	17.1/-	28.0/-	7
10	22.5/-	56.5/-	7
11	19.6/-	52.5/-	7
12	20.4/-	58.7	8
13	21.8/-	68.9	8

Table S1. Comparison of EL performance of similar kind of materials reported in the literature

Figure S3. ¹H NMR spectra of synBTI recorded in CDCl₃

Figure S6. Mass spectra of synBFI.

Figure S7. ¹H NMR spectra of BTITrz recorded in CDCl₃

H3.81 143.55 142.55 142.55 138.41 138.41 138.41 138.41 138.41 138.41 138.41 139.45 120

Figure S8. ¹³C NMR spectra of BTITrz recorded in CDCl₃

Figure S9. ¹H NMR spectra of BFITrz recorded in CDCl₃

Figure S10. ¹³C NMR spectra of BFITrz recorded in CDCl₃

References

- 1. R. K. Konidena, K. H. Lee. J. Y. Lee and W. P. Hong, Chem. Asian. J. 2019, 14, 2251.
- 2. R. K. Konidena, K. H. Lee, J. Y. Lee, W. P. Hong, J. Mater. Chem. C, 2019, 7, 8037.
- 3. C. H. Ryoo, I. Cho, J. Han, J. H. Yang, J. E. Kwon, S. Kim, H. Jeong, C. Lee, and S. Y. Park, *ACS Appl. Mater. Interfaces*, **2017**, *9*, 41413.
- 4. H. Tanaka, K. Shizu, H. Miyazaki and C. Adachi, Chem. Commun. 2012, 48, 11392.
- 5. H. Tanaka, K. Shizu, H. Nakanotani and C. Adachi, J. Phys. Chem. C, 2014, 118, 15985.
- 6. D. R. Lee, J. M. Choi, C. W. Lee and J. Y. Lee, *ACS Appl. Mater. Interfaces*, **2016**, *8*, 23190..
- Y. Li, J. J. Liang, H. C. Li, L. S. Cui, M. K. Fung, S. Barlow, S. R. Marder, C. Adachi, Z.
 Q. Jiang and L. S. Liao, *J. Mater. Chem. C*, **2018**, *6*, 5536.
- 8. Y. J. Kang, J. H. Yun, S. H. Han and J. Y. Lee, J. Mater. Chem. C, 2019, 7, 4573.