SUPPORTING INFORMATION

Precipitating CsPbBr₃ quantum dots in boro-germanate glasses with dense structure and inert environment toward high stable and efficient narrow-band green emitter for wide-color-gamut liquid crystal display

Xiaoliang Pang,^a Haoran Zhang,^{a,*} Liqing Xie,^a Tongtong Xuan,^b Yuqiong Sun,^a Shuaichen Si,^c Bin Jiang,^a Weibin Chen,^a Jianle Zhuang,^a Chaofan Hu,^a Yingliang Liu,^a Bingfu Lei,^{a,*} and Xuejie Zhang^{a,*}

^aGuangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China ^bCollege of Materials, Xiamen University, Xiamen 361005, China ^cSchool of Chemistry, Sun Yat-sen University, Guangzhou 510275, China

Figure.S1. TEM image of CsPbBr3 QDs@glass (460 °C/10 h) sample.

Fig. S2. The absorption spectra of a series of CsPbBr₃ QDs@glass samples, those samples are obtained at different heat-treated temperature (440~520 °C) for 10 hours.

Fig. S3. (a) XPS survey of CsPbBr₃ QDs@glass (460 °C/10 h). (b-d) The high-resolution XPS analysis corresponding to Cs 3d, Pb 4f, Br 3d, respectively.

Fig. S4. (a) Optical microscope photograph of bulk CsPbBr₃ QDs@glass (460 °C/10 h). (b) Optical microscope photograph after grinding the corresponding bulk CsPbBr₃ QDs@glass into powder.

Fig. S5. Peak wavelength and FWHM variations of CsPbBr₃ QDs@glass samples dependence of heat-treatment temperature.

Fig. S6. PL spectra of CsPbBr₃ QDs@glass (460 °C/10 h) in thermal aging experiment with 100 °C for different times.

Fig. S7. Peak wavelength and FWHM variations of CsPbBr₃ QDs@glass (460 °C/10 h) in the time-dependent UV light irradiation experiment.

Fig. S8. The change of peak wavelength and FWHM in CsPbBr₃ QDs@glass (460 °C/10 h) sample in the time-dependent blue light irradiation experiment.

Serial	Driven	CIE coordinates	
number	current (mA)	x	у
1	20	0.1681	0.6788
2	30	0.1653	0.6878
3	40	0.1662	0.6814
4	50	0.1650	0.6816
5	60	0.1624	0.6892
6	70	0.1620	0.6880
7	80	0.1634	0.6782
8	90	0.1628	0.6760
9	100	0.1646	0.6653
Chromaticity shift		$\Delta x = 0.0035$	$\Delta y = 0.0035$

Table S1. CIE color coordinates of the as-fabricated CsPbBr₃ QDs@glass based green-emittingLED device under various forward-bias currents.

Fig. S9. CIE chromaticity coordinates of the as-fabricated CsPbBr₃ QDs@glass based greenemitting LED device under various forward-bias currents, number 1-9 represents different driven currents in Table S1.