Supporting Information

Enhancing the device efficiency by filling the traps in photoanode

Vediappan Sudhakar and Kothandam Krishnamoorthy*

Experimental Section

Dye sensitized solar cell fabrication

Commercial Fluorine-doped tin oxide glass (FTO) (TEC-15, 2.2 mm thickness, Solaronix) has been used as transparent conducting electrode, which is cleaned in an ultrasonic bath with detergent, acetone and iso- propyl alcohol (each step resulted for 20 min long). The FTO substrate were immersed into a 40 mM aqueous TiCl₄ solution at 70 °C for 30 min and washed with plenty of water and ethanol. later, FTO substrates were sintered at 500°C for 30 min. Subsquently, 7-8 µm thick layer of TiO₂ (Ti-Nanoxide T/SP, Solaronix) with an average particle size of 20 nm was deposited on top of FTO substrate. Then the TiO₂ coated FTO substrate were sintered by gradual heating under air flow at 325°C for 5 min, at 375°C for 5 min, at 450 °C for 15 min, and 500 °C for 15 min. Then, 3-4 µm thick scattering layer (particle size ~400 nm) were deposited over the 20 nm TiO₂ particles. Then, FTO substrate were sintered at gradually under air flow at 325°C for 5 min, at 375°C for 5 min, at 450 °C for 15 min, and 500 °C for 15 min. After that, TiO₂ coated substrate FTO plates were immersed into a 40 mM aqueous TiCl₄ solution at 70°C for 30 min and washed with copious amount of water and ethanol, the FTO substrate were sintered at 500 °C for 30min. After cooling to 80 °C, TiO₂ coated FTO substrate were then immersed in a 0.5 mM of N719 dye in of Acetonitrile / t-butanol mixture (volume ratio: 1/1) for 22 h. After anchoring the dye, photoanodes were washed with Acetonitrile / tbutanol (volume ratio: 1/1) solution and dried by air flow. Finally, the electrolyte (AN-50,

Solarnix, Switzerland) solution was introduced into the space between sandwiched photo anodes and Pt coated FTO that was used as a counter electrode.

Hydrazine treatment (Trap filling)

TiO₂ coated FTO substrates were immersed into 100 ml DI water which contains 1.5 mL hydrazine solution. These photoanodes, namely N_{10-70} , N_{20-70} , N_{30-70} and N_{40-70} , were treated at 70 °C at different time intervals such as 10, 20, 30 and 40 minutes respectively. Subsequently, the devices were heated for 30 more minutes at 70 °C to remove the excess of hydrazine from the photoanode. Furthermore, other set of photoanodes of N_{10-70} , N_{20-70} , N_{30-70} and N_{40-70} were sintered at 500°C for different time intervals such as 10, 20, 30 and 40 minutes and named as N_{10-500} , N_{20-500} , N_{30-500} and N_{40-500} .

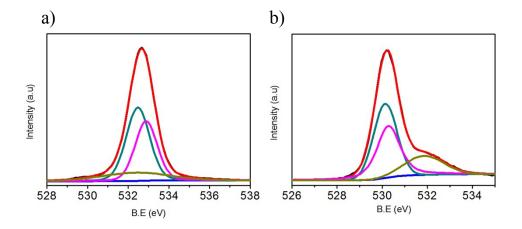


Figure S1. XPS spectra of a) $N_{0\mathchar`-0}$ and b) $N_{30\mathchar`-70}\,O$ 1s peak

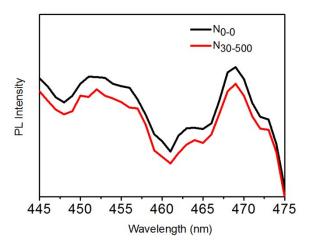
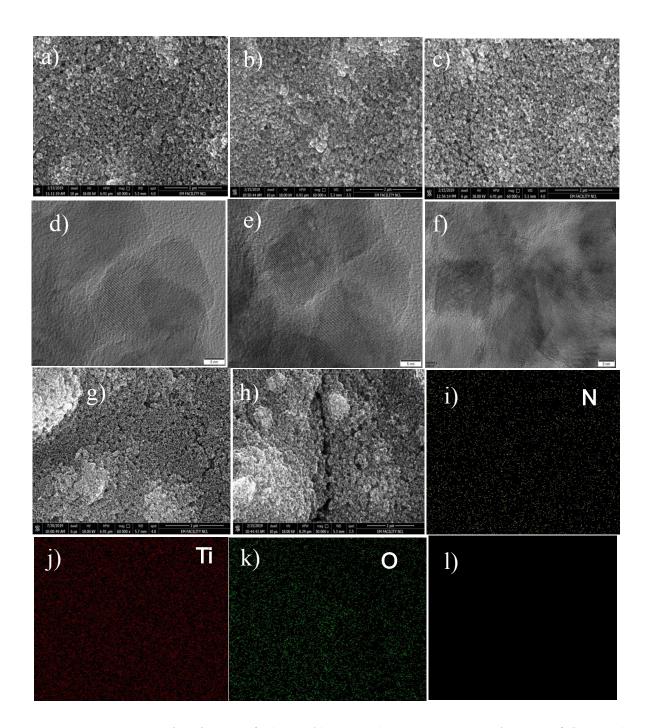



Figure S2. Photoluminescence (PL) curves of the $N_{0\text{-}0}$ and $N_{30\text{-}500}$

Figure S3. SEM top view image of a) N_{0-0} b) N_{30-70} c) N_{30-500} . HRTEM images of d) N_{0-0} e) N_{30-70} f) N_{30-500} . SEM images of g) N_{40-70} h) N_{40-500} and their elemental mapping results i) N (Yellow) j) Ti (Red) k) O (Green) l) Absence of N in N_{0-0}

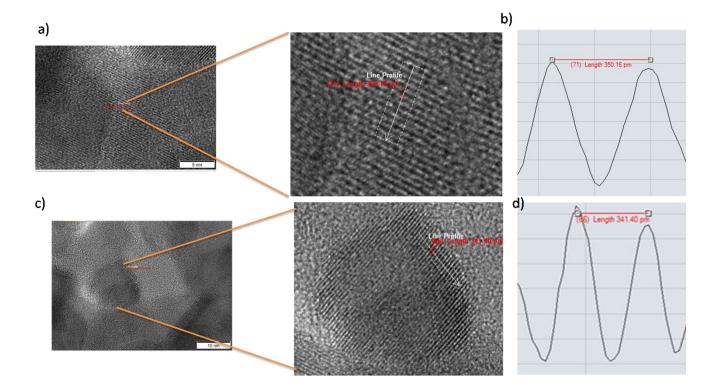


Figure S4. HRTEM images of N_{0-0} (a) Interplanar space value of N_{0-0} (b) HRTEM images of N_{30-500} (c) Interplanar space value of N_{30-500} (d)

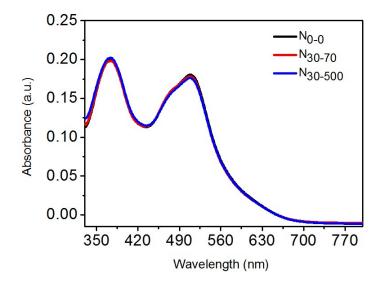


Figure S5. Dye desorption study of $N_{0\text{-}0},\,N_{30\text{-}70}\,\text{and}\,N_{30\text{-}500}$

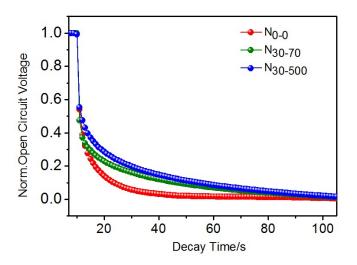


Figure S6. Open-circuit voltage-decay (OCVD) of N_{0-0} , N_{30-70} and N_{30-500}

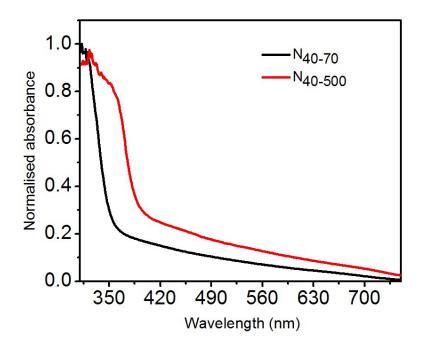


Figure S7. UV-vis spectra of N_{40-70} and N_{40-500}

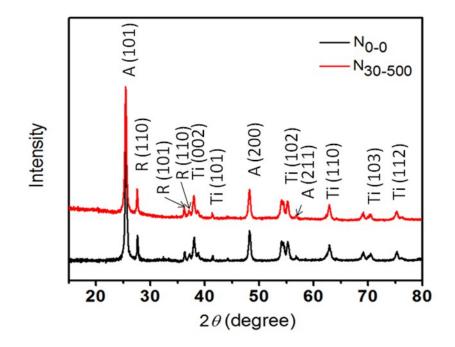
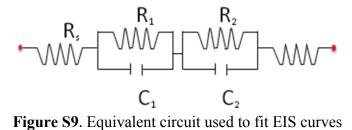



Figure S8. XRD patterns of N_{0-0} and N_{30-500}

Table S1. Photovoltaic parameters of DSSCs with N_{0-0} , N_{30-70} and N_{30-500} measured under 1 sunillumination condition (AM 1.5 G,100 mW cm⁻²). Active area of the DSSCs (18.75 cm²).

Sample	V _{oc} (V)	$J_{\rm sc}$ (mA cm ⁻²)	$^{\rm INT}J_{\rm sc}$ (mA cm ⁻²)	FF (%)	η (%)
N ₀₋₀	0.705 ± 0.003	12.52 <u>+</u> 0.11	10.1	62.1 <u>+</u> 0.1	5.48 <u>+</u> 0.15
N ₃₀₋₇₀	0.721 ± 0.002	13.31 <u>+</u> 0.12	11.3	$71.0 \\ \pm 0.2$	6.81 <u>+</u> 0.16
N ₃₀₋₅₀₀	0.737 ± 0.002	14.77 <u>+</u> 0.14	13.2	73.0 <u>+</u> 0.2	7.94 <u>+</u> 0.13

Table S2. EIS Parameters of N_{0-0} and hydrazine treated TiO₂ based large area (18.75 cm²) DSSCs at an applied voltage of 0.5 V in the dark condition.

Sample	$R_{rec}\left(\Omega ight)$	C_{μ} (F/cm ²)	τ (ms)
N ₀₋₀	9	1.2×10 ⁻⁴	1.1
N ₃₀₋₇₀	12	1.11×10 ⁻³	13.2
N ₃₀₋₅₀₀	20	1.6×10 ⁻³	32