Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

A Visible Light Detector Based on Heterojunction Phototransistor with a Highly Stable Inorganic CsPbI_xBr_{3-x} Perovskite and In-Ga-Zn-O Semiconductor Double-Layer

Hyun-Jae Na,^{‡ab} Nam-Kwang Cho,^{‡a} Jintaek Park,^{ab} Sung-Eun Lee,^{ab} Eun Goo Lee,^{ab}

Changik Im,^a and Youn Sang Kim*ac

^a Program in Nano Science and Technology,

Graduate School of Convergence Science and Technology, Seoul National University

- 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- ^b Samsung Display Company, Ltd,
- 1 Samsung-ro, Giheung-gu, Yongin-si, Gyeonggi-Do 17113, Republic of Korea
- ^c Advanced Institute of Convergence Technology,
- 145 Gwanggyo-ro, Yeongtong-gu, Suwon 16229, Republic of Korea
- ‡ These authors (H.-J. Na and N. -K. Cho) contributed equally.
- * Corresponding author: Prof. Youn Sang Kim (E-mail: younskim@snu.ac.kr)

Fig. S1 The schematic of the device structures. (a) double-layered heterojunction phototransistor with perovskite / IGZO. (b) conventional IGZO phototransistor. (c) single-layered CsPbI₂Br perovskite phototransistor.

Fig. S2 SEM cross section of the heterojunction film with CsPbI₂Br and IGZO.

Fig. S3 Transfer characteristics of heterojunction phototransistors with $CsPbI_xBr_{3-x} / IGZO$ under dark and light irradiation (450 nm, 532 nm, and 635 nm wavelength of 1 mWcm-2 power density) at $V_{DS} = 1$ V, which perovskite films were fabricated with the different concentration of additives (a) 5 wt%-, (b) 12 wt%-, and (c) 21 wt%-CsBr/PbBr₂ in the CsPbI₃ precursor solution.

Fig. S4 Bandgap of the (a) CsPbI₂Br and (b) IGZO by absorption peak. Work function of (c) CsPbI₂Br and (d) IGZO by UPS. (e) Energy band diagram of heterojunction with CsPbI₂Br / IGZO.

Fig. S5 (a) Responsivity and (b) Detectivity of heterojunction phototransistor with CsPbI₂Br (additive 12 wt%-PbBr/CsBr₂ in the CsPbI₃ precursor solution) / IGZO under the 635 nm light illumination (power density = 1 mWcm⁻²) at $V_{DS} = 1$ V.

Fig. S6 (a) Transient response of conventional IGZO phototransistor under 450 nm pulse light at a constant $V_G = -5 V$, $V_{DS} = 1 V$. (b) Enlarged 1 cycle figure of the transient response of conventional IGZO phototransistor under 450 nm pulse light.

 Table S1. Device characteristics of conventional IGZO phototransistor and heterojunction phototransistor with CsPbI2Br / IGZO at the dark state

Structures	Linear Mob. (cm ² V ⁻¹ s ⁻¹)	S.S (Vdec ⁻¹)	I _{off} (A)	I _{on} (A)
Conventional IGZO	15.11 ± 0.59	0.27 ± 0.04	$(1.05 \pm 0.05) \times 10^{-12}$	$(2.40 \pm 0.2) \times 10^{-5}$
CsPbI2Br / IGZO	12.71 ± 0.46	0.36 ± 0.07	$(1.03 \pm 0.04) \times 10^{-12}$	$(1.29 \pm 0.4) \times 10^{-5}$