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Defect formation energy calculation

We calculated the formation energy (enthalpy) of point and pair defects as a function of Fermi energy (EF) using the
well-estabilished equation as follows [1].

H f [Dq] � E[Dq] − Eperf −
∑

i

niµi(T, P) + qEF + Ecorr[Dq] (1)

Here, Eperf is the total energy of the perfect supercell and ni is the number of added (ni >0) or removed (ni <0) i-type species
with chemical potential of µi, while E[Dq] is the DFT (density functional theory) total energy of the supercell containing the
defect with charge state Dq and Ecorr[Dq] is the correction term for the finite size effect of supercell.

Ecorr[Dq] mainly accounts for the electrostatic interactions between peoriodically charged supercells with neutralizing
background for a computational convergence.
We used the Makov-Payne correction method [2] implemented in Quantum ESPRESSO code without considering quadrupole
moment.

EMP
corr[D

q] = αq2/εL (2)

Here α, ε and L are the Madelung constant, static dielectric constant and supercell lattice constant respectively.
Ecorr[Dq] also should include the band-dispersion correction for shallow defects according to the following equation [1].

Eband
corr [Dq] =


−
∑

k wk fk[εCB(k) − εCBM] ; shallow donor∑
k wk(1 − fk)[εVB(k) − εVBM] ; shallow acceptor

(3)

Defect band occupations fk were taken from the output file of PDOS (projected density of states) calculation and multiplied
by their weights wk. εVB(k) (εCB(k)) is the eigen-energy of each k state on fully occupied upper valence band (unoccupied
lower conduction band).

EF means the chemical potential of electron-reservoir with which the defects exchange electrons to be charged differently.
It can possess the value between the VBM (valence band maximum) and the CBM (conduction band minimum) of the perfect
bulk material. When a defect is formed, EF should represent the potential shift of the reservoir. The potential alignment term
∆V was estimated by comparing deep-lying 3s state of Ca atom farthest away from a defect in defective supercell with the
one in perfect supercell.

Next, chemical potential µi(T, P) represents the environmental thermodyanmic condition of i-type species. Under ther-
modynamic equilibrium condition of CaF2 host, following equation is estabilished.

µCa + 2µF = µCaF2
� EDFT

CaF2
(4)

To determine the upper and lower limits of µi(T, P), conventionally, DFT total energies of Ca-bulk and F2-gas were calculated
to set their maximum values. The lower limits were determined by Eq. S4.

EDFT
CaF2
− EDFT

F2
(gas) ≤ µCa(T, P) ≤ EDFT

Ca (bulk) (5)

1
2

[EDFT
CaF2
− EDFT

Ca (bulk)] ≤ µF(T, P) ≤
1
2

EDFT
F2

(gas) (6)
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With the adoption of formation enthalpy of CaF2

∆H f
CaF2

(0, 0) � EDFT
CaF2
− EDFT

Ca (bulk) − EDFT
F2

(gas) (7)

Eq. S5 and Eq. S6 change into

∆H f
CaF2

(0, 0) ≤ µCa(T, P) − EDFT
Ca (bulk) = ∆µCa(T, P) ≤ 0 (8)

1
2

∆H f
CaF2

(0, 0) ≤ µF(T, P) −
1
2

EDFT
F2

(gas) = ∆µF(T, P) ≤ 0 (9)

∆H f
CaF2

(0, 0) is calculated to be -11.91 eV and -13.10 eV for PBEsol and HSE06, respectively, while the experimental value
is -12.67 eV [3].
For the Yb-dopant, upper limit is determined by another thermodynamical constraint of µYb + 3µF ≤ µYbF3

as well as by the
DFT bulk energy.

µYb(T, P) ≤


EDFT

YbF3
(bulk) − 3µF(T, P)

EDFT
Yb (bulk)

(10)

In Table S1 we show the optimized lattice constants and DFT total energies of bulk and gas materials necessary for the
treatment of µi(T, P) as explained above.
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Table S1. Lattice constants of crystals and bond length of fluorine molecule optimized with PBEsol func-
tional and their DFT total energies per formula unit (f.u.) calculated by using PBEsol and HSE06 function-
als.

Compound Phase Lattice constants / Bond lengths (Å) EDFT (Ry/f.u.)
Cal. Exp. PBEsol HSE06

CaF2 Fm3m a = 5.40 a = 5.45a −249.871 −211.480
Ca Pnma a = 5.40 a = 5.58b −131.782 −103.532
Yb Fm3m a = 5.33 a = 5.48b −1720.744 −1402.350
YbF3 Pnma a = 6.24, b = 6.78, c = 4.13 a = 6.22, b = 6.78, c = 4.43c −1897.467 −1563.861
F2 gas dF−F = 1.404 dF−F = 1.412b −117.213 −106.986

aRef. [4], bRef. [3], cRef. [5]

Table S2. Determination of optical 2F7/2 level of 4f electrons in Yb3+ ion by the Fermi energy of Yb-
containing defects in which Yb ions are nominally charged with 3+. Defect-induced potential shifts were
corrected.

Func. Defect EF (eV) EF − EVBM (eV)
[Ybi-Fi]2+ 4.64 1.03

PBEsol Yb1+
Ca 4.64 1.03

[YbCa-Fi]0 4.69 1.08
[Ybi-Fi]2+ 4.34 2.76

HSE06 Yb1+
Ca 4.30 2.72

[YbCa-Fi]0 4.34 2.76

Figure S1. Optimized structures of CaF2 (2×2×2) supercells containing dominantly charged point defects.
After building a supercell from the optimized unit-cell, point defects are formed and all the atoms are
relaxed fully within the fixed cubic lattice. Charges are given by changing the parameters of ”tot charge”
and ”starting charge” in the input file of Quantum ESPRESSO code. Interstital and vacant defects of F
atoms are highlighted in red and blue, respectively, and those of Ca atoms are green and purple, respectively.
Interstitial and substituted Yb atoms are dark grey.
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Figure S2. Optimized structures of CaF2 (2×2×2) supercells containing differently charged pair defects.
After building a supercell from the optimized unit-cell, point defects are formed and all the atoms are
relaxed fully within the fixed cubic lattice. Charges are given by changing the parameters of ”tot charge”
and ”starting charge” in the input file of Quantum ESPRESSO code. YbCa-Fi and 2(YbCa-Fi) represent the
Yb-monomer and -dimer, respectively, while YbCa-2Fi is set as their intermediate state. Interstital F atoms
are highlighted in red and Yb atoms are dark grey.
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Figure S3. Total and atom-projected density of states (DOS) in perfect and defect-containning CaF2 calcu-
lated by using PBEsol functional. The calculated band gap of perfect CaF2 is 7.33 eV. The upper valence
band is from F-2p states and the lower conduction band is from mostly Ca-4p, while anti-bonding state
betweem F-2p and Ca-3p represents the CBM. Defects are not charged and 4 f -levels are clearly positioned
in the band bap for Ybi, YbCa, Ybi-Fi, and YbCa-Fi.
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Figure S4. Defect formation energy diagrams under (a) F-rich (Ca-poor) and (b) F-poor (Ca-rich) conditions
as a function of Fermi energy calculated by using PBEsol functional. The VBM was set as zero. In F-rich
condition, point defects of F1−

i and V2−
Ca have the lowest formation energies in the most range of EF, while,

in F-poor condition, Ca2+
i and V1+

F are the dominant defects with the lowest values. In the lower part of EF,
YbCa charged with 1+ becomes stable with smaller formation energy than the neutral one. The formation
energy of Ybi is always much bigger than that of YbCa in F-rich condition. In F-poor condition, two
formation energy lines are intersecting at EF=4.40 eV (for HSE06, at EF=6.64 eV) below which Ybi gets
more stable than YbCa.
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Figure S5. Binding energies of pair defects from their component point defects as a function of Fermi energy
calculated by using PBEsol functional. All the complex defects tend to minimize their binding energies near
the VBM and the CBM. YbCa-Fi follows the binding mechanism of Yb1+

Ca+F0
i → [YbCa-Fi]1+ near the VBM

resulting in the negative binding energy of -0.09 eV and the mechanism of Yb0
Ca+F1−

i → [YbCa-Fi]1− with
very small value of 0.04 eV around the CBM.
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